首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effects of the hypoglycaemic compound pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pent-2-enoic acid, pentanoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on several reactions in rat liver mitochondria were determined. 2. The use of manometric techniques for measurements of oxidations and of phosphorylation is critically discussed. 3. Pent-4-enoic acid and pentanoic acid uncoupled oxidative phosphorylation at low concentrations, but usually by not more than about 50%. 4. All the compounds, except cyclobutanecarboxylic acid, strongly inhibited the oxidation of pyruvate and 2-oxoglutarate, but the oxidations of succinate, citrate and 3-hydroxybutyrate were not strongly inhibited. 5. All the compounds, except cyclobutanecarboxylic acid, inhibited decarboxylation of [1-(14)C]pyruvate with ferricyanide as electron acceptor. 6. All the compounds, except pent-2-enoic acid, caused mitochondrial swelling after a time-lag.  相似文献   

2.
1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pent-2-enoic acid, pentanoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on glycolysis, glucose oxidation and gluconeogenesis in some rat tissues were determined. 2. None of the compounds at low concentrations inhibited glycolysis by particle-free supernatant fractions from rat liver, skeletal muscle and intestinal mucosa, though there was inhibition by cyclopropanecarboxylic acid and cyclobutanecarboxylic acid at 3mm concentration. 3. Pent-4-enoic inhibited the oxidation of [1-(14)C]palmitate by rat liver slices, but did not increase the oxidation of [U-(14)C]glucose. 4. Pent-4-enoic acid (0.01mm) strongly inhibited gluconeogenesis by rat kidney slices from pyruvate or succinate, but none of the other compounds inhibited significantly at low concentrations. 5. There was also some inhibition of gluconeogenesis in kidney slices from rats injected with pent-4-enoic acid. 6. The mechanism of the hypoglycaemic effect of pent-4-enoic acid is discussed; it is suggested that there is an inhibition of fatty acid and ketone-body oxidation and of gluconeogenesis so that glucose reserves become exhausted, leading to hypoglycaemia. 7. The mechanism of the hypoglycaemic action of pent-4-enoic acid appears to be similar to that of hypoglycin.  相似文献   

3.
1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pentanoic acid, pent-2-enoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on the oxidation of saturated fatty acids by rat liver mitochondria were determined. 2. The formation of (14)CO(2) from [1-(14)C]palmitate was strongly inhibited by 0.01mm-pent-4-enoic acid. 3. The inhibition of oxygen uptake was less than that of (14)CO(2) formation, presumably because fumarate was used as a sparker. 4. The oxidation of [1-(14)C]-butyrate, -octanoate or -laurate was not strongly inhibited by 0.01mm-pent-4-enoic acid. 5. The other four non-hypoglycaemic compounds did not inhibit the oxidation of any saturated fatty acid when tested at 0.01mm concentration, though they all inhibited strongly at 10mm. 6. The oxidation of [1-(14)C]-myristate and -stearate, but not of [1-(14)C]decanoate, was strongly inhibited by 0.01mm-pent-4-enoic acid. 7. The oxidation of [1-(14)C]palmitate was about 50% carnitine-dependent under the experimental conditions used. 8. The percentage inhibition of [1-(14)C]palmitate oxidation by pent-4-enoic acid was the same whether carnitine was present or not. 9. Acetoacetate formation from saturated fatty acids was inhibited by 0.1mm-cyclopropanecarboxylic acid to a greater extent than their oxidation. 10. The other compounds tested inhibited acetoacetate formation from saturated fatty acids proportionately to the inhibition of oxidation. 11. Possible mechanisms for the inhibition of long-chain fatty acid oxidation by pent-4-enoic acid are discussed. 12. There was a correlation between the ability to inhibit long-chain fatty acid oxidation and hypoglycaemic activity in this series of compounds.  相似文献   

4.
The metabolic effects of pent-4-enoate were studied in isolated rat hepatocytes; 1 mM-pent-4-enoate did not significantly inhibit gluconeogenesis from lactate, alanine and glycerol, but significantly decreased glucose synthesis from pyruvate. The addition of 1 mM-NH4Cl led to a drastic inhibition of glucose synthesis from all these substrates. In hepatocytes incubated with 10 mM-alanine and 1 mM-oleate, pent-4-enoate at 0.05-1 mM slightly inhibited glucose synthesis and ketogenesis. The addition of ammonia resulted in a dramatic potentiation of the metabolic effects of pent-4-enoate. Half-maximum effect of ammonia was observed at 0.2 mM concentration. Concomitant cellular concentrations of ATP and acetyl-CoA were also decreased by the addition of ammonia, as were lactate/pyruvate ratio and beta-hydroxybutyrate/acetoacetate ratio. These data suggest that ammonia seriously interferes with the cellular metabolism of pent-4-enoate and leads to a dramatic potentiation of its effects.  相似文献   

5.
19 The effect of pent-4-enoic acid, propionic acid and several other short-chain fatty acids on citrulline synthesis in rat liver mitochondria was studied. 2.Pent-4-enoate at 1 mM inhibited mitochondrial citulline synthesis by about 80-90%. It is concluded that pent-4-enoate inhibits citrulline synthesis by interfering with some aspect of mitochondrial energy metabolism. This results in impairment of mitochondrial ornithine uptake or depletion of mitochondrial ATP, which, in turn, impairs carbamoyl phosphate synthesis or both. Evidence in support of this conclusion includes: pent-4-enoate has no effect on citrulline synthesis supported by succinate or exogenous ATP; pent-4-enoate lowers the medium plus mitochondrial ATP concentration; finally, when glutamate is the oxidizable substrate, pent-4-enoate decreases the carbamoyl phosphate concentration in mitochondria incubated without ornithine to minimize citrulline synthesis and impairs the mitochondrial uptake of ornithine, but it has neither effect when succinate is the oxidizable substrate. 4. Propionate, butyrate and crotonate also inhibit mitochondrial citrulline synthesis, but much less than pent-4-enoate. 5. Acetate, pentanoate, pent-2-enoate, hexanoate, octanoate, isovalerate, tiglylate and alpha-methylbutyrate have little or no effect on mitochondrial citrulline synthesis.  相似文献   

6.
1. Butyryl-CoA dehydrogenase from Peptostreptococcus elsdenii forms very tightly bound complexes with various acyl-CoA compounds. Spectra in some cases merely show resolution of the 450nm band, but those with acetoacetyl-, pent-2-enoyl- and 4-methylpent-2-enoyl-CoA show long-wavelength bands similar to the 710nm band of native enzyme. These complexes are formed instantaneously by the yellow form of the enzyme and much more slowly by the green form. 2. An acid extract of the green enzyme reconverts the yellow into the green form. 3. Hydroxylamine makes irreversible the otherwise reversible conversion of the green enzyme into the yellow form by phenylmercuric acetate. 4. Amino acid analysis for taurine and beta-alanine shows approx. 1mol of CoA/mol of flavin in green enzyme. Anaerobic dialysis of reduced enzyme removes the CoA. On acid precipitation of green enzyme the CoA is found only in the supernatant. 5. It is concluded that native green enzyme is probably complexed with unsaturated acyl-CoA. This is shown to be consistent with findings of other workers. Catalytic activity requires displacement of the acyl-CoA, which is therefore likely to be a potent inhibitor. 6. An explanation is offered for the irreversible conversion of green into yellow enzyme by sodium dithionite. 7. The enzyme displays a feeble, previously undetected, activity towards beta-hydroxybutyryl-CoA. 8. The product of oxidation of pent-4-enoyl-CoA forms a complex with reduced enzyme and strongly inhibits reoxidation of the FAD. This may contribute to inhibition of fatty acid oxidation by pent-4-enoic acid in mammals.  相似文献   

7.
The metabolic effects of pent-4-enoate were studied in beating and potassium-arrested perfused rat hearts. The addition of 0.8mm-pent-4-enoate to the fluid used to perfuse a potassium-arrested heart resulted in a 70% increase in the O(2) consumption and a 66% decrease in the glycolytic flux as measured in terms of the de-tritiation of [3-(3)H]glucose, although the proportion of the O(2) consumption attributable to glucose oxidation decreased from an initial 30% to 10%. The pent-4-enoate-induced increase in O(2) consumption was only 15% in the beating heart. In the potassium-arrested heart, pent-4-enoate stimulated palmitate oxidation by more than 100% when measured in terms of the production of (14)CO(2) from [1-(14)C]palmitate, but in the beating heart palmitate oxidation was inhibited. Perfusion of the heart with pent-4-enoate had no effect on the proportion of pyruvate dehydrogenase found in the active form, in spite of large changes in the CoASH and acetyl-CoA concentrations and changes in their concentration ratios. The effects of pent-4-enoate on the cellular redox state were dependent on the ATP consumption of the heart. In the beating heart, pent-4-enoate caused a rapid mitochondrial NAD(+) reduction that subsequently faded out, so that the final state was more oxidized than the initial state. The arrested heart, however, remained in a more reduced state than initially, even after the partial re-oxidation that followed the initial rapid NAD(+) reduction. The ability of pent-4-enoate to increase or decrease fatty acid oxidation can be explained on the basis of the differential effects of pent-4-enoate on the concentration of citric acid-cycle intermediates under conditions of high or low ATP consumption of the myocardial cell. The proportion of the fatty acids in the fuel consumed by the heart is probably primarily determined by the regulatory mechanisms of glycolysis. When pent-4-enoate causes an increase in the citric acid-cycle intermediates, feedback inhibition of glycolysis results in an increase in the oxidation of fatty acids.  相似文献   

8.
Two enzymes catalyze the synthesis of carbamylphosphate (CP) in the liver. One is intramitochondrial and utilizes ammonia to make CP for ureagenesis; the second is cytoplasmic and utilizes glutamine to produce CP for pyrimidine biosynthesis. The extent to which the metabolic independence of the two pathways is abridged by the use of a common precursor was examined with measurements of the incorporation of [14C]NaHCO3 into orotic acid, uridine nucleotides, and urea in isolated hepatocytes. Pyrimidine synthesis was markedly stimulated by physiological concentrations of ammonia, and the stimulation was antagonized by ornithine. At intracellular concentrations of ornithine and levels of ammonia found in the portal circulation, some 90% of pyrimidine synthesis was ammonia-dependent. When the glutamine-dependent activity was released from feedback inhibition with galactosamine, the ammonia-dependent incorporation still accounted for 2/3 of pyrimidine synthesis. These results do not support the widely held view that the cytoplasmic enzyme is the sole source of CP for pyrimidine biosynthesis in the liver. They suggest instead that the bulk of the CP incorporated into hepatic pyrimidines is of mitochondrial origin. However, an experiment with intact animals failed to provide decisive evidence on this interpretation. Pyrimidine biosynthesis was sharply inhibited by the addition of uridine, but ureagenesis was unaffected. When physiological levels of ammonia were provided, the sensitivity of pyrimidine biosynthesis to uridine was lost. Although inhibition of the ammonia-dependent enzyme by pyrimidines has been observed with cell-free preparations, it was not evident in the intact cell. Thus, to the extent that the CP consumed in pyrimidine biosynthesis is of mitochondrial origin, feedback control of the orotate pathway appears to be thwarted.  相似文献   

9.
Feeding of clofibrate to male rats leads to a 4–7 fold increase in the activity of the 4-enoyl-CoA reductase in the liver. Concomitantly the inhibition of fatty acid oxidation by pent-4-enoate is abolished, and an increased glucose formation in the presence of pent-4-enoate is observed. It is suggested that pent-4-enoate is converted to propionyl-CoA via the reaction sequence pent-4-enoyl-CoA→pent-2,4-dienoyl-CoA→pent-2-enoyl-CoA→propionyl-CoA + acetyl-CoA.  相似文献   

10.
The highest ammonia concentration in the body is found in the colon lumen and although there is evidence that this metabolite can be absorbed through the colonic epithelium, there is little information on the capacity of the colonic mucosa to transfer and metabolize this compound. In the present study, we used a model of conscious pig with a canula implanted into the proximal colon to inject endoluminally increasing amounts of ammonium chloride and to measure during 5 h the kinetics of ammonia and amino acid concentration changes in the portal and arterial blood. By injecting as a single dose from 1 to 5 g ammonia into the colonic lumen, a dose-related increase in ammonia concentration in the portal blood was recorded. Ammonia concentration remained unchanged in the arterial blood except for the highest dose tested, i.e. 5 g which thus apparently exceeds the hepatic ureagenesis capacity. By calculating the apparent net ammonia absorption, it was determined that the pig colonic epithelium has the capacity to absorb 4 g ammonia. Ammonia absorption through the colonic epithelium was concomitant with increase of l-glutamine and l-arginine concentrations in the portal blood. This coincided with the expression of both glutamate dehydrogenase and glutamine synthetase in isolated colonic epithelial cells. Since l-glutamine and l-arginine are known to represent activators for liver ureagenesis, we propose that increased portal concentrations of these amino acids following increased ammonia colonic luminal concentration represent a metabolic link between colon mucosa and liver urea biosynthesis.  相似文献   

11.
It has been proposed that key enzymes of ureagenesis and the alanine aminotransferase activity predominate in periportal hepatocytes. However, ureagenesis from alanine, when measured in the perfused liver, did not show periportal predominance and even the release of the direct products of alanine transformation, lactate and pyruvate, was higher in perivenous cells. An alternative way of analyzing the functional distributions of alanine aminotransferase and the urea cycle along the hepatic acini would be to measure alanine and urea production from precursors such as lactate or pyruvate plus ammonia. In the present work these aspects were investigated in the bivascularly perfused rat liver. The results of the present study confirm that gluconeogenesis and the associated oxygen uptake tend to predominate in the periportal region. Alanine synthesis from lactate and pyruvate plus ammonia, however, predominated in the perivenous region. Furthermore, no predominance of ureagenesis in the periportal region was found, except for conditions of high ammonia concentrations plus oxidizing conditions induced by pyruvate. These observations corroborate the view that data on enzyme activity or expression alone cannot be extrapolated unconditionally to the living cell. The current view of the hepatic ammonia-detoxifying system proposes that the small perivenous fraction of glutamine synthesizing perivenous cells removes a minor fraction of ammonia that escapes from ureagenesis in periportal cells. However, since urea synthesis occurs at high rates in all hepatocytes with the possible exclusion of those cells not possessing carbamoyl-phosphate synthase, it is probable that ureagenesis is equally important as an ammonia-detoxifying mechanism in the perivenous region.  相似文献   

12.
《FEBS letters》2014,588(9):1686-1691
We recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated. NMR studies using 15 N-labeled ammonia indicated that basal and glucagon-induced ureagenesis from ammonia were significantly reduced in hepatocytes from LPS-treated rats. Our data suggest that hepatocyte mtAQP8-mediated ammonia removal via ureagenesis is impaired by LPS, a mechanism potentially relevant to the molecular pathogenesis of defective hepatic ammonia detoxification in sepsis.  相似文献   

13.
1. Phenylalanyl-tRNA synthetases have been partially purified from cotyledons of seeds of Aesculus californica, which contains 2-amino-4-methylhex-4-enoic acid, and from four other species of Aesculus that do not contain this amino acid. The A. californica preparation was free from other aminoacyl-tRNA synthetases, and the contaminating synthetase activity in preparations from A. hippocastanum was decreased to acceptable limits by conducting assays of pyrophosphate exchange activity in 0.5m-potassium chloride. 2. The phenylalanyl-tRNA synthetase from each species activated 2-amino-4-methylhex-4-enoic acid with K(m) 30-40 times that for phenylalanine. The maximum velocity for 2-amino-4-methylhex-4-enoic acid was only 30% of that for phenylalanine with the A. californica enzyme, but the maximum velocities for the two substrates were identical for the other four species. 3. 2-Amino-4-methylhex-4-enoic acid was not found in the protein of A. californica, so discrimination against this amino acid probably occurs in the step of transfer to tRNA, though subcellular localization, or subsequent steps of protein synthesis could be involved. 4. Crotylglycine, methallylglycine, ethallylglycine, 2-aminohex-4,5-dienoic acid, 2-amino-5-methylhex-4-enoic acid, 2-amino-4-methylhex-4-enoic acid, beta-(thien-2-yl)alanine, beta-(pyrazol-1-yl)alanine, phenylserine and m-fluorophenylalanine were substrates for pyrophosphate exchange catalysed by the phenylalanyl-tRNA synthetases of A. californica or A. hippocastanum. Allylglycine, phenylglycine and 2-amino-4-phenylbutyric acid were inactive.  相似文献   

14.
In this study an E2-degrading bacterium was isolated from the activated sludge of a municipal treatment plant that treats the waste from a contraceptive medicine-processing factory in Beijing, China. Using the observed morphological and physiological features of the bacterium and 16S rRNA sequence analysis, this bacterial strain was identified as Rhodococcus sp. DS201. Using single-factor experiments and orthogonal tests, it was demonstrated that, when strain DS210 bacteria were inoculated into MM medium at an initial concentration of 1 mg/L with an initial pH of 7 and an inoculum amount of 1%, complete degradation of E2 by this strain was achieved within 3 days at 30oC. After strain DS201 had degraded the E2, several E2 metabolites were detected in the culture extracts using high-performance liquid chromatography (HPLC); they were then further identified using HPLC with tandem mass spectrometry (LC-MS/MS). Mass spectrum analysis of the E2 degradation identified the following products: pent-4-enoic acid; 2-ethyl-3-hydroxy-6-methylcyclohexane-1-carboxylic acid; 3-(7a-methyl-1,5-dioxooctahydro-1H-inden-4-yl) propanoic acid; and 5-hydroxy-4-(3-hydroxypropyl)-7a-methyloctahydro-1H-inden-1-one. These products have not previously been reported as parts of a mechanism for microbial E2 degradation and were suspected to be new metabolite products. Therefore, the E2 degradation pathway by strain DS201 is proposed herein.  相似文献   

15.
(Z)-tetracos-5-enoic acid and racemic cis-4-(2-octadecylcyclopropane-1-yl)-butanoic acid have been prepared from 1-eicosene by a new facile route. Periodic acid cleavage of the epoxide of 1-eicosene gave nonadecanal which was condensed with 4-carboxybutyltriphenylphosphonium bromide to give predominately (Z)-tetracos-5-enoic acid. Simmons-Smith type cyclopropanation of (Z)-tetracos-5-enoic acid gave a minor proportion of racemic cis-4-(2-octadecylcyclopropane-1-yl)-butanoic acid accompanied by major amounts of its methyl ester.  相似文献   

16.
R B Silverman  C George 《Biochemistry》1988,27(9):3285-3289
(Z)-4-Amino-2-fluorobut-2-enoic acid (1) is shown to be a mechanism-based inactivator of pig brain gamma-aminobutyric acid aminotransferase. Approximately 750 inactivator molecules are consumed prior to complete enzyme inactivation. Concurrent with enzyme inactivation is the release of 708 +/- 79 fluoride ions; transamination occurs 737 +/- 15 times per inactivation event. Inactivation of [3H]pyridoxal 5'-phosphate ([3H]PLP) reconstituted GABA aminotransferase by 1 followed by denaturation releases [3H]PMP with no radioactivity remaining attached to the protein. A similar experiment carried out with 4-amino-5-fluoropent-2-enoic acid [Silverman, R. B., Invergo, B. J., & Mathew, J. (1986) J. Med. Chem. 29, 1840-1846] as the inactivator produces no [3H]PMP; rather, another radioactive species is released. These results support an inactivation mechanism for 1 that involves normal catalytic isomerization followed by active site nucleophilic attack on the activated Michael acceptor. A general hypothesis for predicting the inactivation mechanism (Michael addition vs enamine addition) of GABA aminotransferase inactivators is proposed.  相似文献   

17.
Evidence for an enamine mechanism of inactivation of pig brain gamma-aminobutyric acid (GABA) aminotransferase by (S,E)-4-amino-5-fluoropent-2-enoic acid is presented. apo-GABA aminotransferase reconstituted with [3H]pyridoxal 5'-phosphate is inactivated by (S,E)-4-amino-5-fluoropent-2-enoic acid and the pH is raised to 12. All of the radioactivity is released from the enzyme as an adduct of the cofactor; no [3H]pyridoxamine 5'-phosphate is generated.  相似文献   

18.
1. The synthesis of pent-4-enoyl-l-carnitine, cyclopropanecarbonyl-l-carnitine and cyclobutanecarbonyl-l-carnitine is described. 2. Pent-4-enoate strongly inhibits palmitoyl-l-carnitine oxidation in coupled but not in uncoupled mitochondria. Pent-4-enoyl-l-carnitine strongly inhibits palmitoyl-l-carnitine oxidation in uncoupled mitochondria. Prior intramitochondrial formation of pent-4-enoyl-CoA is therefore necessary for inhibition. 3. There was a small self-limiting pulse of oxidation of pent-4-enoyl-l-carnitine during which the ability to inhibit the oxidation of subsequently added palmitoyl-l-carnitine developed. 4. Pent-4-enoate and pent-4-enoyl-l-carnitine are equally effective inhibitors of the oxidation of all even-chain acylcarnitines of chain length C(4)-C(16). Pent-4-enoyl-l-carnitine also inhibits the oxidation of pyruvate and of 2-oxoglutarate. 5. Pent-4-enoate strongly inhibits the oxidation of palmitate but not that of octanoate. This is presumably due to competition between octanoate and pent-4-enoate for medium-chain acyl-CoA ligase. 6. There was less inhibition of the oxidation of pyruvate by pent-4-enoyl-l-carnitine, and of palmitoyl-l-carnitine by cyclopropanecarbonyl-l-carnitine, after pre-incubation with 10mm-arsenate. This suggests that these inhibitions were caused either by depletion of free CoA or by increase of acyl-CoA concentrations, since arsenate deacylates intramitochondrial acyl-CoA. There was little effect on the inhibition of palmitoyl-l-carnitine oxidation by pent-4-enoyl-l-carnitine. 7. Penta-2,4-dienoate strongly inhibited palmitoyl-l-carnitine oxidation in coupled mitochondria; acrylate only inhibited slightly. 8. Pent-4-enoate (0.1mm) caused a rapid and almost complete decrease in free CoA and a large increase in acid-soluble acyl-CoA when incubated with coupled mitochondria. Cyclopropanecarboxylate caused a similar decrease in CoA, with an equivalent rise in acid-soluble acyl-CoA concentrations. n-Pentanoate caused extensive lowering of CoA and a large increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. Octanoate caused a 50% lowering of CoA and an increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. 9. Cyclopropanecarboxylate and n-pentanoate were less potent inhibitors of palmitate oxidation than was pent-4-enoate. 10. It is concluded that pent-4-enoate causes a specific inhibition of beta-oxidation after the formation intramitochondrially of its metabolites.  相似文献   

19.
The introduction of versatile functional groups, allyl and ester, at the C-1 position of the acyclic chain in acyclic adenine nucleosides was achieved for the first time directly by alkylation of adenine and N6-potected adenine. Thus, the C-1'-substituted N9-adenine acyclic nucleoside, adenine-9-yl-pent-4-enoic acid ethyl ester (11), was prepared by direct alkylation of adenine with 2-bromopent-4-enoic acid ethyl ester (6), while the corresponding N7-regioisomer, 2-[6-(dimethylaminomethyleneamino)-purin-7-yl]-pent-4-enoic acid ethyl ester (10), was obtained in one step by the coupling of N, N-dimethyl-N'- (9H-purin-6-yl)-formamidine (9) with 2-bromopent-4-enoic acid ethyl ester (6). The functional groups, ester and allyl, were converted to the desired hydroxymethyl and hydroxyethyl groups, and subsequently to phosphonomethyl derivatives and corresponding pyrophosphorylphosphonates.  相似文献   

20.
Metabolic effects of pent-4-enoate in isolated perfused rat heart.   总被引:2,自引:2,他引:0       下载免费PDF全文
The metabolic effects of the hypoglycaemic agent pent-4-enoate were studied in isolated, beating or potassium-arrested rat hearts. The addition of 0.8mM-pent-4-enoate to the perfusion fluid increased O2 consumption by 76% in the arrested heart and by 14% in the beating heart; the concentration ratio of phosphocreatine/creatine increase concomitantly by 47% and 27% respectively. Perfusion of the heart with pent-4-enoate resulted in a 30-fold increase in the concentration of the pool of tricarboxylic acid-cycle intermediates in the tissue, about 90% of this increase being due to malate. The sum of the concentrations of the myocardial free amino acids remained virtually unchanged during the accumulation of the tricarboxylic acid-cycle intermediates. It was concluded that pent-4-enoate can be effectively metabolized in the myocardium and that its metabolism probably proceeds via propionyl-CoA, since pent-4-enoate reproduces many of the metabolic characteristics of propionate in the cardiac muscle. The accumulation of the tricarboxylic acid-cycle intermediates is probably due to carboxylation of propionyl-CoA. The response pattern of the metabolite concentrations in the cardiac muscle is quite different from that in the liver, in which decrease of the concentrations of the tricarboxylic acid-cycle intermediates has been observed previously [Williamson, Rostand & Peterson (1970) J. Biol. Chem. 245, 3242-3251].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号