首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lineage progression of neural precursors to an EGF‐responsive state can be promoted by several extrinsic signals, including fibroblast growth factor 2 (FGF2) and Hedgehog (Hh). It has been suggested that EGF‐responsive precursors in the embryonic cerebral cortex originate in the ventral telencephalon in an FGF‐dependent manner and migrate dorsally. To determine whether cortical EGF‐responsive cells originate locally from dorsal precursors, we marked these precursors using Emx1‐cre and the cre reporter Z/EG and observed a local origin for EGF‐responsive cells. We also found a rostral–caudal difference in the abundance of self‐renewing, neurogenic Emx1‐lineage precursors, with more present rostrally. Deleting the Hh receptor smoothened in Emx‐1 lineage cells impaired their progression to an EGF‐responsive state. Moreover, loss of smoothened increased the proportion of neurogenic, self‐renewing Emx1‐lineage cells in caudal regions of cortex, eliminating their asymmetric distribution. Our results support the idea that Hh signaling promotes lineage progression of stem/transit amplifying cells, particularly in caudal regions of the embryonic cortex, leading to rostral–caudal differences in the abundance of neurogenic, self‐renewing precursors.© 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1096–1109, 2014  相似文献   

3.
4.
5.
6.
The expression domains of genes implicated in forebrain patterning often share borders at specific anteroposterior positions. This observation lies at the heart of the prosomeric model, which proposes that such shared borders coincide with proposed compartment boundaries and that specific combinations of genes expressed within each compartment are responsible for its patterning. Thus, genes such as Emx1, Emx2, Pax6, and qin (Bf1) are seen as being responsible for specifying different regions in the forebrain (diencephalon and telencephalon). However, the early expression of these genes, before the appearance of putative compartment boundaries, has not been characterized. In order to determine whether they have stable expression domains before this stage, we have compared mRNA expression of each of the above genes, relative both to one another and to morphological landmarks, in closely staged chick embryos. We find that, between HH stage 8 and HH stage 13, each of the genes has a dynamic spatial and temporal expression pattern. To test for autonomy of gene expression in the prosencephalon, we grafted tissue from this region to more caudal positions in the neural tube and analyzed for expression of Emx1, Emx2, qin, or Pax6. We find that gene expression is autonomous in prosencephalic tissue from as early as HH stage 8. In the case of Emx1, our data suggest that, from as early stage 8, presumptive telencephalic tissue also is committed to express this gene. We propose that early patterning along the anteroposterior axis of the presumptive telencephalon occurs across a field that is subdivided by different combinations of genes, with some overlapping areas, but without either sharp boundaries or stable interfaces between expression domains.  相似文献   

7.
8.
9.
The vertebrate brain is among the most complex biological structures of which the organization remains unclear. Increasing numbers of studies have accumulated on the molecular basis of midbrain/hindbrain development, yet relatively little is known about forebrain organization. Nested expression among Otx and Emx genes has implicated their roles in rostral brain regionalization, but single mutant phenotypes of these genes have not provided sufficient information. In order to genetically determine the interaction between Emx and Otx genes in forebrain development, we have examined Emx2(-/-)Otx2(+/-) double mutants and Emx2 knock-in mutants into the Otx2 locus (Otx2(+/Emx2)). Emx2(-/-)Otx2(+/-) double mutants did not develop diencephalic structures such as ventral thalamus, dorsal thalamus/epithalamus and anterior pretectum. The defects were attributed to the loss of the Emx2-positive region at the three- to four-somite stage, when its expression occurs in the laterocaudal forebrain primordia. Ventral structures such as the hypothalamus, mammillary region and tegmentum developed normally. Moreover, dorsally the posterior pretectum and posterior commissure were also present in the double mutants. In contrast, Otx2(+/Emx2) knock-in mutants displayed the majority of these diencephalic structures; however, the posterior pretectum and posterior commissure were specifically absent. Consequently, development of the dorsal and ventral thalamus and anterior pretectum requires cooperation between Emx2 and Otx2, whereas Emx2 expression is incompatible with development of the commissural region of the pretectum.  相似文献   

10.
11.
12.
13.
14.
15.
Emx1 and Emx2 genes are known to be involved in mammalian forebrain development. In order to investigate the evolution of the Emx gene family in vertebrates, a phylogenetic analysis was carried out on the Emx genes sequenced in man, mice, frogs, coelacanths and zebrafish. The results demonstrated the existence of two clades (Emx1 and Emx2), each grouping one of the two genes of the investigated taxa. The only exception was the zebrafish Emx1-like gene which turned out to be a sister group to both the Emx1 and Emx2 clusters. Such striking sequence divergence observed for the zebrafish Emx1-like gene could indicate that it is not orthologous to the other Emx1 genes, and therefore, in vertebrates there must be three Emx genes. Alternatively, if the zebrafish emx1 gene is orthologous to the tetrapod one, it must have undergone to strong diversifying selection.  相似文献   

16.
17.
Emx1 and Emx2 are mouse cognates of the Drosophila head gap gene, ems. Previously we have reported that the dentate gyrus is affected in Emx2 single mutants, and defects are subtle in Emx1 single mutants. In most of the cortical region Emx1 and Emx2 functions would be redundant. To test this assumption here we examined the Emx1 and Emx2 double mutant phenotype. In the double mutants the archipallium was transformed into the roof without establishing the signaling center at the cortical hem and without developing the choroid plexus. We propose that Emx1 and Emx2 cooperate in generation of the boundary between the roof and archipallium; these genes develop the archipallium against the roof. This process probably occurs immediately after the neural tube closure concomitant with the Emx1 expression.  相似文献   

18.
We report the characterization of three Emx genes in a chondrichthyan, the dogfish Scyliorhinus canicula. Comparisons of these genes with their osteichthyan counterparts indicate that the gnathostome Emx genes belong to three distinct orthology classes, each containing one of the dogfish genes and either the tetrapod Emx1 genes (Emx1 class), the osteichthyan Emx2 genes (Emx2 class) or the zebrafish Emx1 gene (Emx3 class). While the three classes could be retrieved from the pufferfish genome data, no indication of an Emx3-related gene in tetrapods could be found in the databases, suggesting that this class may have been lost in this taxon. Expression pattern comparisons of the three dogfish Emx genes and their osteichthyan counterparts indicate that not only telencephalic, but also diencephalic Emx expression territories are highly conserved among gnathostomes. In particular, all gnathostomes share an early, dynamic phase of Emx expression, spanning presumptive dorsal diencephalic territories, which involves Emx3 in the dogfish, but another orthology class, Emx2, in tetrapods. In addition, the dogfish Emx2 gene shows a highly specific expression domain in the cephalic paraxial mesoderm from the end of gastrulation and throughout neurulation, which suggests a role in the segmentation of the cephalic mesoderm.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号