首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
It is well known that arterial smooth muscle cells (SMC) of adult rats, cultured in a medium containing fetal calf serum (FCS), replicate actively and lose the expression of differentiation markers, such as desmin, smooth muscle (SM) myosin and alpha-SM actin. We report here that compared to freshly isolated cells, primary cultures of SMC from newborn animals show no change in the number of alpha-SM actin containing cells and a less important decrease in the number of desmin and SM myosin containing cells than that seen in primary cultures of SMC from adult animals; moreover, contrary to what is seen in SMC cultured from adult animals, they show an increase of alpha-SM actin mRNA level, alpha-SM actin synthesis and expression per cell. These features are partially maintained at the 5th passage, when the cytoskeletal equipment of adult SMC has further evolved toward dedifferentiation. Cloned newborn rat SMC continue to express alpha-SM actin, desmin and SM myosin at the 5th passage. Thus, newborn SMC maintain, at least in part, the potential to express differentiated features in culture. Heparin has been proposed to control proliferation and differentiation of arterial SMC. When cultured in the presence of heparin, newborn SMC show an increase of alpha-SM actin synthesis and content but no modification of the proportion of alpha-SM actin total (measured by Northern blots) and functional (measured by in vitro translation in a reticulocyte lysate) mRNAs compared to control cells cultured for the same time in FCS containing medium. This suggests that heparin action is exerted at a translational or post-translational level. Cultured newborn rat aortic SMC furnish an in vitro model for the study of several aspects of SMC differentiation and possibly of mechanisms leading to the establishment and prevention of atheromatous plaques.  相似文献   

2.
《The Journal of cell biology》1986,103(6):2787-2796
A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha- smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha- smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm- 1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha- smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin- negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions.  相似文献   

3.
The blocking effect of the NH2-terminal decapeptide of alpha-smooth muscle (SM) actin AcEEED-STALVC on the binding of the specific monoclonal antibody anti-alpha SM-1 (Skalli, O., P. Ropraz, A. Trzeviak, G. Benzonana, D. Gillessen, and G. Gabbiani. 1986. J. Cell Biol. 103:2787-2796) was compared with that of synthetic peptides modified by changing the acetyl group or by substituting an amino acid in positions 1 to 5. Using immunofluorescence and immunoblotting techniques, anti-alpha SM-1 binding was abolished by the native peptide and by peptides with a substitution in position 5, indicating that AcEEED is the epitope for anti-alpha SM-1. Incubation of anti-alpha SM- 1 (or of its Fab fragment) with arterial SM actin increased polymerization in physiological salt conditions; the antibody binding did not hinder the incorporation of the actin antibody complex into the filaments. This action was not exerted on skeletal muscle actin. After microinjection of the alpha-SM actin NH2-terminal decapeptide or of the epitopic peptide into cultured aortic smooth muscle cells, double immunofluorescence for alpha-SM actin and total actin showed a selective disappearance of alpha-SM actin staining, detectable at approximately 30 min. When a control peptide (e.g. alpha-skeletal [SK] actin NH2-terminal peptide) was microinjected, this was not seen. This effect is compatible with the possibility that the epitopic peptide traps a protein involved in alpha-SM actin polymerization during the dynamic filament turnover in stress fibers. Whatever the mechanism, this is the first evidence that the NH2 terminus of an actin isoform plays a role in the regulation of polymerization in vitro and in vivo.  相似文献   

4.
We have examined alpha-smooth muscle actin (alpha-SM actin) protein and mRNA levels in proliferating and density-arrested rabbit vascular smooth muscle cells (SMC) and also studied overall polypeptide synthesis in these cells by two-dimensional (2-D) gel electrophoresis. Of the approximately 1,000 cellular polypeptides resolved by 2-D gel analysis, we consistently detected increased expression of 12 polypeptides in growth-arrested SMC. These polypeptides, with apparent molecular weights of 24,000 to 55,000 exhibited relative increases of between fourfold to greater than tenfold. Three of these polypeptides were expressed at undetectable levels in proliferating SMC. We also detected 12 secreted polypeptides that were expressed at higher levels in growth-arrested SMC. More changes were associated with the secreted polypeptides, since they represented approximately 4% of the total resolved secreted polypeptides, while only 1% of the cellular polypeptides were increased in high-density growth-arrested cells. Under these conditions we observed no change in relative alpha-SM actin protein content as determined by 2-D gel analysis and Western blots. This was corroborated by high levels of alpha-SM actin mRNA levels in both proliferating and high-density growth-arrested SMC. These results indicate rabbit vascular SMC maintain a high level of expression of a smooth muscle differentiation marker (alpha-SM actin) in a proliferation- and density-independent manner. We also examined polypeptide synthesis in SMC isolated by enzymatic digestion of the aorta vs. cells isolated by the explant method. We found that although overall protein patterns were remarkably similar, several differences were observed. These differences were not due to increased contamination by fibroblasts, since both enzymatically- and explant-derived SMC contained high levels of alpha-SM actin as determined by immunofluorescence and by Northern analysis.  相似文献   

5.
The relationship between growth and cytodifferentiation was studied in cultured rat aortic smooth muscle cells (SMCs) using expression of the smooth muscle (SM)-specific isoactins (Vanderkerckhove, J., and K. Weber, 1979, Differentiation, 14:123-133) as a marker for differentiation in these cells. Isoactin expression was evaluated by: (a) measurements of fractional isoactin content and synthesis ([35S]methionine incorporation) by densitometric evaluation of two-dimensional isoelectric focusing sodium dodecyl sulfate gels, and (b) immunocytological examination using SM-specific isoactin antibodies. Results showed the following: (a) Loss of alpha-SM isoactin was not a prerequisite for initiation of cellular proliferation in primary cultures of rat aortic SMCs. (b) alpha-SM isoactin synthesis and content were low in subconfluent log phase growth cells but increased nearly threefold in density-arrested postconfluent cells. Conversely, beta-nonmuscle actin synthesis and content were higher in rapidly dividing subconfluent cultures than in quiescent postconfluent cultures. These changes were observed in primary and subpassaged cultures. (c) alpha-SM actin synthesis was increased by growth arrest of sparse cultures in serum-free medium (SFM; Libby, P., and K. V. O'Brien, 1983, J. Cell. Physiol., 115:217-223) but reached levels equivalent to density-arrested cells only after extended periods in SFM (i.e., greater than 5 d). (d) SFM did not further augment alpha-SM actin synthesis in postconfluent SMC cultures. (e) Serum stimulation of cells that had been growth-arrested in SFM resulted in a dramatic decrease in alpha-SM actin synthesis that preceded the onset of cellular proliferation. These findings demonstrate that cultured vascular SMCs undergo differential expression of isoactins in relation to their growth state and indicate that growth arrest promotes cytodifferentiation in these cells.  相似文献   

6.
In search of early structural markers of arteriogenesis, we studied the expression of gap junction proteins as well as of contractile and cytoskeletal proteins in smooth muscle cells (SMCs) during coronary collateral vessel growth induced by chronic occlusion of the left circumflex artery (LCx) in the dog heart. We used confocal microscopy with antibodies against connexin37 (Cx37), alpha-smooth muscle actin (alpha-SM actin), calponin, desmin and vinculin. The quantitative confocal analysis of immunofluorescence intensity showed that (1) in normal vessels (NV), Cx37 was present in endothelium only, not in SMC. Calponin, alpha-SM actin, desmin and vinculin were evenly expressed in SMC. (2) In early growing V (EV) with minimal intima formation, alpha-SM actin, calponin and vinculin showed little change in SMC, but desmin was 3.3 times lower than in NV, and Cx37 was induced (NV 0 arbitrary units/microm2, EV 50.3). (3) In actively growing V (AV), alpha-SM actin, calponin and vinculin were 3-, 3.3- and 2.9-fold lower, respectively, in the neointima as compared to the media. However, Cx37 was 48.2 AU/microm2 in the media and 15.8 AU/microm2 in the neointima. Desmin was almost absent in the neointima and 5-fold reduced in the media. SMC, strongly positive for alpha-SM actin and calponin, expressed Cx37. Our findings indicate that induction of Cx37 and reduction of desmin precede the phenotypic changes of SMCs, which are characterized by down-regulation of alpha-SM actin, calponin and vinculin, and the formation of a neointima. An altered expression of Cx37 and desmin, therefore, are early markers for arteriogenesis in dog heart.  相似文献   

7.
Clinical and experimental investigations have shown that, during wound healing and fibrocontractive diseases, fibroblasts acquire, more or less permanently according to the situation, morphological and biochemical features of smooth muscle (SM) cells including the expression of alpha-SM actin. Primary and passaged cultures of rat and human fibroblasts contain a subpopulation of cells expressing alpha-SM actin. These cells could derive from SM cells and/or pericytes present in the tissue from which cultures have been produced or represent bona fide fibroblasts. We have investigated the presence of alpha-SM actin in fibroblast cultures, clones, and subclones. In all cases the fibroblastic populations studied showed a proportion of alpha-SM actin expressing cells. Even after cloning, we never obtained populations negative for alpha-SM actin. We conclude that alpha-SM actin expression in fibroblastic cultures is not due to contaminant cells but is a feature of fibroblasts themselves. Our results support the view that fibroblastic cells are a heterogeneous population. It has been previously shown that gamma-interferon (gamma-IFN) decreases alpha-SM actin expression in SM cells. In rat and human fibroblasts, gamma-IFN decreases alpha-SM actin protein and mRNA expression as well as proliferation. The properties of this cytokine make it a good candidate for exerting an anti-fibrotic activity in vivo.  相似文献   

8.
We have previously demonstrated that alpha-smooth muscle (alpha-SM) actin is predominantly distributed in the central region and beta-non-muscle (beta-NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha-actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta-NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and alpha-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha-SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha-actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sarcomere-like units with alpha-actinin-rich dense bodies analogous to Z-lines, are the contractile structures of cultured SMCs that link to the network of vimentin-containing intermediate filaments through the dense bodies and dense plaques.  相似文献   

9.
10.
Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile phenomena observed during fibrotic diseases. We show here that the subcutaneous administration of transforming growth factor- beta 1 (TGF beta 1) to rats results in the formation of a granulation tissue in which alpha-SM actin expressing myofibroblasts are particularly abundant. Other cytokines and growth factors, such as platelet-derived growth factor and tumor necrosis factor-alpha, despite their profibrotic activity, do not induce alpha-SM actin in myofibroblasts. In situ hybridization with an alpha-SM actin probe shows a high level of alpha-SM actin mRNA expression in myofibroblasts of TGF beta 1-induced granulation tissue. Moreover, TGF beta 1 induces alpha-SM actin protein and mRNA expression in growing and quiescent cultured fibroblasts and preincubation of culture medium containing whole blood serum with neutralizing antibodies to TGF beta 1 results in a decrease of alpha-SM actin expression by fibroblasts in replicative and non-replicative conditions. These results suggest that TGF beta 1 plays an important role in myofibroblast differentiation during wound healing and fibrocontractive diseases by regulating the expression of alpha-SM actin in these cells.  相似文献   

11.
The expression of cell cytoskeleton proteins in atheromatous plaques of human aorta was investigated using double immunofluorescence technique and a set of antibodies. It was found that in 4 out of 12 plaques some smooth muscle cells (SMC) were stained by monoclonal antibodies to desmin. No such cells were detected in apparently unaffected aortic intima. In addition to typical SMC and these cells, the cells unstained by antisera to smooth muscle myosin but reacting with monoclonal antibodies to vimentin and SMC surface were revealed in all plaques adjacent to the central fatty mass.  相似文献   

12.
Frozen or paraffin-embedded human and rat lung specimens were stained with antibodies against total actin, alpha-smooth muscle (SM) actin, vimentin, desmin, or gelsolin. Alveolar interstitial myofibroblasts [i.e., contractile interstitial cells (CIC)] were labeled by total actin antibody but not by alpha-SM actin antibody. They stained for vimentin and gelsolin and, in rat lungs, most of them for desmin. Pericytes located around venules at the junction of three alveolar septa were always positive for alpha-SM actin and never for desmin. Tissue samples were also immunostained by an alpha-SM actin antibody and studied by electron microscopy. With this technique we confirmed that cells, identified as pericytes on the basis of their location, were intensely labeled by alpha-SM actin antibodies, whereas alveolar myofibroblasts were not. We conclude that in the lung interstitium pericytes and alveolar myofibroblasts have distinct cytoskeletal features, alpha-SM actin antibody staining being a simple method to distinguish between them. Furthermore, it appears that alveolar myofibroblasts have a peculiar pattern of cytoskeletal protein composition which, in the rat, is similar to that previously described for stromal cells in uterine submucosa, liver sinusoids (Ito cells), or the core of intestinal villi.  相似文献   

13.
14.
The objective of this study was to determine whether cyclic strain could promote human umbilical vein endothelial cells (HUVECs) to express markers in common with the mature smooth muscle cell (SMC) phenotype, suggesting endothelial cell to SMC transdifferentiation. HUVECs were cultured on stretched membranes at 10% stretch and 60 cycles/min for 24-96 hr, and demonstrated elongation with enhanced and organized F-actin distribution. By using real-time polymerase chain reaction analysis, the mRNA levels of five specific SMC markers, SM22-alpha, alpha-smooth muscle actin (alpha-SMA), caldesmon-1, smooth muscle myosin heavy chain (SMMHC), and calponin-1 were significantly increased in cyclic strain-treated HUVECs as compared with those in static control cells. Protein levels of SM22-alpha and alpha-SMA were also substantially increased by Western blot and immunofluorescence staining. In addition, two specific endothelial markers, von Willebrand factor (vWF) and vascular endothelial growth factor receptor-2 (VEGFR-2), showed a reduction in mRNA expression. In addition, cyclic strain-induced increase of SM22-alpha and alpha-SMA expression were reversible when cells were cultured back to the static condition. These results demonstrate a possible endothelial cell to SMC transdifferentiation in response to cyclic strain. Hemodynamic forces in modulating endothelial phenotype may play an important role in the vascular system.  相似文献   

15.
16.
17.
We have examined the histological and cytoskeletal changes in rat connective tissues induced by subcutaneous perfusion with cytokines. Granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), interleukin-1-alpha (IL-1-alpha), transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) produced a significant fibroblast accumulation, neovascular development and a weak to moderate leukocyte infiltration, while interleukin-2 (IL-2) and gamma-interferon (gamma-IFN) induced intense mononucleated leukocyte infiltration. Immunofluorescence staining showed that accumulated fibroblastic cells were positive for alpha-smooth muscle (SM) actin (but negative for the desmin and muscle myosin) only in GM-CSF-treated tissues. Electron microscopic examination established that a significant proportion of fibroblastic cell in GM-CSF-, IL-1-alpha- or TGF-beta-treated animals were typical myofibroblasts. Only in GM-CSF-treated animals did microfilament bundles of myofibroblasts contain alpha-SM actin, when examined by immuno electron microscopy. Our results suggest that locally applied cytokines induce the formation of distinct granulation tissues. In particular, GM-CSF stimulates alpha-SM actin synthesis in myofibroblasts, illustrating an unexpected extra-hematopoietic in vivo effect of this factor.  相似文献   

18.
19.
The role of platelet-derived growth factor (PDGF) in the control of smooth muscle cell (SMC) differentiation was explored in vitro by examining its effects on expression of the smooth muscle (SM) specific contractile protein SM alpha actin in cultured rat aortic SMC. Quiescent, postconfluent SMC express maximal levels of alpha actin and responded to human platelet-derived growth factor (partially purified from platelets) by entering the cell cycle and undergoing approximately one synchronous round of DNA synthesis. Concomitantly, these cultures exhibited a marked reduction in alpha actin synthesis. Chronic treatment with PDGF (72 hours at 8 or 12 hour intervals) was associated with a transient increase in thymidine labeling index and a decrease in alpha actin expression. Interestingly, between 48 and 72 hours following initial treatment, thymidine labeling indices returned to near control levels while SM alpha actin expression remained depressed. This effect was reversible; fractional alpha actin synthesis increased immediately after PDGF removal. When subsequently stimulated with 10% fetal bovine serum (FBS), cells chronically pretreated with PDGF entered S phase approximately 4 hours earlier than cells pretreated with PDGF vehicle, consistent with the idea that the maintained suppression of alpha actin synthesis in SMC subjected to chronic PDGF treatment was associated with partial cell cycle transit. Chronic treatment with highly purified recombinant PDGF-BB elicited similar effects on alpha actin synthesis and partial cell cycle transit. Flow cytometric analysis of chronic PDGF-treated SMC demonstrated a 25% increase in forward angle light scatter, an index of cell size. These data implicate a possible role for PDGF in regulation of SMC differentiation and suggest a potentially important role for this mitogen in the phenotypic modulation accompanying SMC growth and in mediation of the cellular hypertrophy associated with cell cycle progression.  相似文献   

20.
Quiescent smooth muscle cells (SMC) in normal artery express a pattern of actin isoforms with alpha-smooth muscle (alpha SM) predominance that switches to beta predominance when the cells are proliferating. We have examined the relationship between the change in actin isoforms and entry of SMC into the growth cycle in an in vivo model of SMC proliferation (balloon injured rat carotid artery). alpha SM actin mRNA declined and cytoplasmic (beta + gamma) actin mRNAs increased in early G0/G1 (between 1 and 8 h after injury). In vivo synthesis and in vitro translation experiments demonstrated that functional alpha SM mRNA is decreased 24 h after injury and is proportional to the amount of mRNA present. At 36 h after injury, SMC prepared by enzymatic digestion were sorted into G0/G1 and S/G2 populations; only the SMC committed to proliferate (S/G2 fraction) showed a relative slight decrease in alpha SM actin and, more importantly, a large decrease in alpha SM actin mRNA. A switch from alpha SM predominance to beta predominance was present in the whole SMC population 5 d after injury. To determine if the change in actin isoforms was associated with proliferation, we inhibited SMC proliferation by approximately 80% with heparin, which has previously been shown to block SMC in late G0/G1 and to reduce the growth fraction. The switch in actin mRNAs and synthesis at 24 h was not prevented; however, alpha SM mRNA and protein were reinduced at 5 d in the heparin-treated animals compared to saline-treated controls. These results suggest that in vivo the synthesis of actin isoforms in arterial SMC depends on the mRNA levels and changes after injury in early G0/G1 whether or not the cells subsequently proliferate. The early changes in actin isoforms are not prevented by heparin, but they are eventually reversed if the SMC are kept in the resting state by the heparin treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号