首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracting protein-protein interaction (PPI) from biomedical literature is an important task in biomedical text mining (BioTM). In this paper, we propose a hash subgraph pairwise (HSP) kernel-based approach for this task. The key to the novel kernel is to use the hierarchical hash labels to express the structural information of subgraphs in a linear time. We apply the graph kernel to compute dependency graphs representing the sentence structure for protein-protein interaction extraction task, which can efficiently make use of full graph structural information, and particularly capture the contiguous topological and label information ignored before. We evaluate the proposed approach on five publicly available PPI corpora. The experimental results show that our approach significantly outperforms all-path kernel approach on all five corpora and achieves state-of-the-art performance.  相似文献   

2.
Drug-drug interaction (DDI) detection is particularly important for patient safety. However, the amount of biomedical literature regarding drug interactions is increasing rapidly. Therefore, there is a need to develop an effective approach for the automatic extraction of DDI information from the biomedical literature. In this paper, we present a Stacked Generalization-based approach for automatic DDI extraction. The approach combines the feature-based, graph and tree kernels and, therefore, reduces the risk of missing important features. In addition, it introduces some domain knowledge based features (the keyword, semantic type, and DrugBank features) into the feature-based kernel, which contribute to the performance improvement. More specifically, the approach applies Stacked generalization to automatically learn the weights from the training data and assign them to three individual kernels to achieve a much better performance than each individual kernel. The experimental results show that our approach can achieve a better performance of 69.24% in F-score compared with other systems in the DDI Extraction 2011 challenge task.  相似文献   

3.
The wealth of interaction information provided in biomedical articles motivated the implementation of text mining approaches to automatically extract biomedical relations. This paper presents an unsupervised method based on pattern clustering and sentence parsing to deal with biomedical relation extraction. Pattern clustering algorithm is based on Polynomial Kernel method, which identifies interaction words from unlabeled data; these interaction words are then used in relation extraction between entity pairs. Dependency parsing and phrase structure parsing are combined for relation extraction. Based on the semi-supervised KNN algorithm, we extend the proposed unsupervised approach to a semi-supervised approach by combining pattern clustering, dependency parsing and phrase structure parsing rules. We evaluated the approaches on two different tasks: (1) Protein–protein interactions extraction, and (2) Gene–suicide association extraction. The evaluation of task (1) on the benchmark dataset (AImed corpus) showed that our proposed unsupervised approach outperformed three supervised methods. The three supervised methods are rule based, SVM based, and Kernel based separately. The proposed semi-supervised approach is superior to the existing semi-supervised methods. The evaluation on gene–suicide association extraction on a smaller dataset from Genetic Association Database and a larger dataset from publicly available PubMed showed that the proposed unsupervised and semi-supervised methods achieved much higher F-scores than co-occurrence based method.  相似文献   

4.
Yang Z  Lin Y  Wu J  Tang N  Lin H  Li Y 《Proteomics》2011,11(19):3811-3817
Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. However, the volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database curators to detect and curate protein interaction information manually. We present a multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, and graph and combines their output with Ranking support vector machine (SVM). Experimental evaluations show that the features in individual kernels are complementary and the kernel combined with Ranking SVM achieves better performance than those of the individual kernels, equal weight combination and optimal weight combination. Our approach can achieve state-of-the-art performance with respect to the comparable evaluations, with 64.88% F-score and 88.02% AUC on the AImed corpus.  相似文献   

5.

Background

Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task.

Results

A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations.

Conclusions

In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.  相似文献   

6.
The most important way of conveying new findings in biomedical research is scientific publication. Extraction of protein–protein interactions (PPIs) reported in scientific publications is one of the core topics of text mining in the life sciences. Recently, a new class of such methods has been proposed - convolution kernels that identify PPIs using deep parses of sentences. However, comparing published results of different PPI extraction methods is impossible due to the use of different evaluation corpora, different evaluation metrics, different tuning procedures, etc. In this paper, we study whether the reported performance metrics are robust across different corpora and learning settings and whether the use of deep parsing actually leads to an increase in extraction quality. Our ultimate goal is to identify the one method that performs best in real-life scenarios, where information extraction is performed on unseen text and not on specifically prepared evaluation data. We performed a comprehensive benchmarking of nine different methods for PPI extraction that use convolution kernels on rich linguistic information. Methods were evaluated on five different public corpora using cross-validation, cross-learning, and cross-corpus evaluation. Our study confirms that kernels using dependency trees generally outperform kernels based on syntax trees. However, our study also shows that only the best kernel methods can compete with a simple rule-based approach when the evaluation prevents information leakage between training and test corpora. Our results further reveal that the F-score of many approaches drops significantly if no corpus-specific parameter optimization is applied and that methods reaching a good AUC score often perform much worse in terms of F-score. We conclude that for most kernels no sensible estimation of PPI extraction performance on new text is possible, given the current heterogeneity in evaluation data. Nevertheless, our study shows that three kernels are clearly superior to the other methods.  相似文献   

7.
Marginalized kernels for biological sequences   总被引:1,自引:0,他引:1  
MOTIVATION: Kernel methods such as support vector machines require a kernel function between objects to be defined a priori. Several works have been done to derive kernels from probability distributions, e.g., the Fisher kernel. However, a general methodology to design a kernel is not fully developed. RESULTS: We propose a reasonable way of designing a kernel when objects are generated from latent variable models (e.g., HMM). First of all, a joint kernel is designed for complete data which include both visible and hidden variables. Then a marginalized kernel for visible data is obtained by taking the expectation with respect to hidden variables. We will show that the Fisher kernel is a special case of marginalized kernels, which gives another viewpoint to the Fisher kernel theory. Although our approach can be applied to any object, we particularly derive several marginalized kernels useful for biological sequences (e.g., DNA and proteins). The effectiveness of marginalized kernels is illustrated in the task of classifying bacterial gyrase subunit B (gyrB) amino acid sequences.  相似文献   

8.
When one drug influences the level or activity of another drug this is known as a drug-drug interaction (DDI). Knowledge of such interactions is crucial for patient safety. However, the volume and content of published biomedical literature on drug interactions is expanding rapidly, making it increasingly difficult for DDIs database curators to detect and collate DDIs information manually. In this paper, we propose a single kernel-based approach to extract DDIs from biomedical literature. This novel kernel-based approach can effectively make full use of syntactic structural information of the dependency graph. In particular, our approach can efficiently represent both single subgraph topological information and the relation of two subgraphs in the dependency graph. Experimental evaluations showed that our single kernel-based approach can achieve state-of-the-art performance on the publicly available DDI corpus without exploiting multiple kernels or additional domain resources.  相似文献   

9.
Shang Y  Li Y  Lin H  Yang Z 《PloS one》2011,6(8):e23862
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.  相似文献   

10.
11.

Background:

Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing.

Results:

Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist.

Conclusion:

Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet http://bionlp.sourceforge.net.
  相似文献   

12.

Background

In biomedical research, events revealing complex relations between entities play an important role. Biomedical event trigger identification has become a research hotspot since its important role in biomedical event extraction. Traditional machine learning methods, such as support vector machines (SVM) and maxent classifiers, which aim to manually design powerful features fed to the classifiers, depend on the understanding of the specific task and cannot generalize to the new domain or new examples.

Methods

In this paper, we propose an approach which utilizes neural network model based on dependency-based word embedding to automatically learn significant features from raw input for trigger classification. First, we employ Word2vecf, the modified version of Word2vec, to learn word embedding with rich semantic and functional information based on dependency relation tree. Then neural network architecture is used to learn more significant feature representation based on raw dependency-based word embedding. Meanwhile, we dynamically adjust the embedding while training for adapting to the trigger classification task. Finally, softmax classifier labels the examples by specific trigger class using the features learned by the model.

Results

The experimental results show that our approach achieves a micro-averaging F1 score of 78.27 and a macro-averaging F1 score of 76.94 % in significant trigger classes, and performs better than baseline methods. In addition, we can achieve the semantic distributed representation of every trigger word.
  相似文献   

13.
Protein homology detection using string alignment kernels   总被引:2,自引:0,他引:2  
MOTIVATION: Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVMs) are currently the most effective methods for the problem of superfamily recognition in the Structural Classification Of Proteins (SCOP) database. The performance of SVMs depends critically on the kernel function used to quantify the similarity between sequences. RESULTS: We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the-art methods for remote homology detection. AVAILABILITY: Software and data available upon request.  相似文献   

14.
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: rf.irbal@rakras.  相似文献   

15.

Background  

Bioinformatics tools for automatic processing of biomedical literature are invaluable for both the design and interpretation of large-scale experiments. Many information extraction (IE) systems that incorporate natural language processing (NLP) techniques have thus been developed for use in the biomedical field. A key IE task in this field is the extraction of biomedical relations, such as protein-protein and gene-disease interactions. However, most biomedical relation extraction systems usually ignore adverbial and prepositional phrases and words identifying location, manner, timing, and condition, which are essential for describing biomedical relations. Semantic role labeling (SRL) is a natural language processing technique that identifies the semantic roles of these words or phrases in sentences and expresses them as predicate-argument structures. We construct a biomedical SRL system called BIOSMILE that uses a maximum entropy (ME) machine-learning model to extract biomedical relations. BIOSMILE is trained on BioProp, our semi-automatic, annotated biomedical proposition bank. Currently, we are focusing on 30 biomedical verbs that are frequently used or considered important for describing molecular events.  相似文献   

16.
MOTIVATION: Protein remote homology detection is a central problem in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for remote homology detection. The performance of these methods depends on how the protein sequences are modeled and on the method used to compute the kernel function between them. RESULTS: We introduce two classes of kernel functions that are constructed by combining sequence profiles with new and existing approaches for determining the similarity between pairs of protein sequences. These kernels are constructed directly from these explicit protein similarity measures and employ effective profile-to-profile scoring schemes for measuring the similarity between pairs of proteins. Experiments with remote homology detection and fold recognition problems show that these kernels are capable of producing results that are substantially better than those produced by all of the existing state-of-the-art SVM-based methods. In addition, the experiments show that these kernels, even when used in the absence of profiles, produce results that are better than those produced by existing non-profile-based schemes. AVAILABILITY: The programs for computing the various kernel functions are available on request from the authors.  相似文献   

17.
RelEx--relation extraction using dependency parse trees   总被引:4,自引:0,他引:4  
MOTIVATION: The discovery of regulatory pathways, signal cascades, metabolic processes or disease models requires knowledge on individual relations like e.g. physical or regulatory interactions between genes and proteins. Most interactions mentioned in the free text of biomedical publications are not yet contained in structured databases. RESULTS: We developed RelEx, an approach for relation extraction from free text. It is based on natural language preprocessing producing dependency parse trees and applying a small number of simple rules to these trees. We applied RelEx on a comprehensive set of one million MEDLINE abstracts dealing with gene and protein relations and extracted approximately 150,000 relations with an estimated performance of both 80% precision and 80% recall. AVAILABILITY: The used natural language preprocessing tools are free for use for academic research. Test sets and relation term lists are available from our website (http://www.bio.ifi.lmu.de/publications/RelEx/).  相似文献   

18.
Gene-Gene dependency plays a very important role in system biology as it pertains to the crucial understanding of different biological mechanisms. Time-course microarray data provides a new platform useful to reveal the dynamic mechanism of gene-gene dependencies. Existing interaction measures are mostly based on association measures, such as Pearson or Spearman correlations. However, it is well known that such interaction measures can only capture linear or monotonic dependency relationships but not for nonlinear combinatorial dependency relationships. With the invocation of hidden Markov models, we propose a new measure of pairwise dependency based on transition probabilities. The new dynamic interaction measure checks whether or not the joint transition kernel of the bivariate state variables is the product of two marginal transition kernels. This new measure enables us not only to evaluate the strength, but also to infer the details of gene dependencies. It reveals nonlinear combinatorial dependency structure in two aspects: between two genes and across adjacent time points. We conduct a bootstrap-based test for presence/absence of the dependency between every pair of genes. Simulation studies and real biological data analysis demonstrate the application of the proposed method. The software package is available under request.  相似文献   

19.
20.

Background

Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations.

Results

We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times.

Conclusions

The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号