首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
2.
3.
Bananas are one of the most important fruits in tropical and subtropical regions worldwide. Each year, banana plantations expand, but the areas available are mostly dry lands. The establishment of strategies for obtaining drought tolerant cultivars depends on understanding of biological responses at genetic, molecular and biochemical levels. Proteomics is a powerful tool for functional characterization of the response of plants to abiotic stress and little is known about drought tolerance in Musa spp. Therefore, the aim of this study was to identify proteins related to drought tolerance in two contrasting banana genotypes, Prata Anã and BRS Tropical, susceptible and tolerant to drought, respectively. Proteins were extracted from rhizomes of bananas grown under greenhouse conditions with control, irrigated and water deficit regimes. The differential protein expression pattern was established by two-dimensional (2-D) electrophoresis and spots analyzed in nano Q-Tof Micro UPLC. Twenty-three differentially expressed proteins were found in the tolerant genotype (BRS Tropical) under water deficit, with proteins involved in metabolism, defense and transport. Proteins were classified according to known function and biosynthetic pathways. Signaling proteins in response to water stress, especially for the biological function of growth and development of plants cells, were also encountered, whereas heat shock proteins played a significant role. This is the first report of proteomic analysis for drought tolerance in ‘Pome’ and ‘Silk-type’ bananas containing the ‘B’ genome. Our work provides insights into Musa spp. response to drought and data for further studies regarding molecular mechanisms, which determine how Musa spp. cells better overcome environmental perturbations.  相似文献   

4.
5.
6.
Sorghum with its remarkable adaptability to drought and high temperature provides a model system for grass genomics and resource for gene discovery especially for abiotic stress tolerance. Group 3 LEA genes from barley and rice have been shown to play crucial role in abiotic stress tolerance. Here, we present a genome-wide analysis of LEA3 genes in sorghum. We identified four genes encoding LEA3 proteins in the sorghum genome and further classified them into LEA3A and LEA3B subgroups based on the conservation of LEA3 specific motifs. Further, expression pattern of these genes were analyzed in seeds during development and vegetative tissues under abiotic stresses. SbLEA3A group genes showed expression at early stage of seed development and increased significantly at maturity, while SbLEA3B group genes expressed only in matured seeds. Expression of SbLEA3 genes in response to abiotic stresses such as soil moisture deficit (drought), osmotic, salt, and temperature stresses, and exogenous ABA treatments was also studied in the leaves of 2-weeks-old seedlings. ABA and drought induced the expression of all LEA3 genes, while cold and heat stress induced none of them. Promoter analysis revealed the presence of multiple ABRE core cis-elements and a few low temperature response (LTRE)/drought responsive (DRE) cis-elements. This study suggests non-redundant function of LEA3 genes in seed development and stress tolerance in sorghum.  相似文献   

7.
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and plant responses to drought still remains elusive. Moreover, the contribution of aquaporin genes to the enhanced tolerance to drought in arbuscular mycorrhisal (AM) plants has never been investigated. Therefore, we studied, at a molecular level, whether the expression of aquaporin-encoding genes in roots is altered by the AM symbiosis as a mechanism to enhance host plant tolerance to water deficit. In this study, genes encoding plasma membrane aquaporins (PIPs) from soybean and lettuce were cloned and their expression pattern studied in AM and nonAM plants cultivated under well-watered or drought stressed conditions. Results showed that AM plants responded to drought stress by down-regulating the expression of the PIP genes studied and anticipating its down-regulation as compared to nonAM plants. The possible physiological implications of this down-regulation of PIP genes as a mechanism to decrease membrane water permeability and to allow cellular water conservation is further discussed.  相似文献   

8.
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic proteins found primarily in plants. The barley hva1 gene encodes a group 3 LEA protein and is induced by ABA and water deficit conditions. We report here the over expression of hva1 in mulberry under a constitutive promoter via Agrobacterium-mediated transformation. Molecular analysis of the transgenic plants revealed the stable integration and expression of the transgene in the transformants. Transgenic plants were subjected to simulated salinity and drought stress conditions to study the role of hva1 in conferring tolerance. The transgenic plants showed better cellular membrane stability (CMS), photosynthetic yield, less photo-oxidative damage and better water use efficiency as compared to the non-transgenic plants under both salinity and drought stress. Under salinity stress, transgenic plants show many fold increase in proline concentration than the non-transgenic plants and under water deficit conditions proline is accumulated only in the non-transgenic plants. Results also indicate that the production of HVA1 proteins helps in better performance of transgenic mulberry by protecting membrane stability of plasma membrane as well as chloroplastic membranes from injury under abiotic stress. Interestingly, it was observed that hva1 conferred different degrees of tolerance to the transgenic plants towards various stress conditions. Amongst the lines analysed for stress tolerance transgenic line ST8 was relatively more salt tolerant, ST30, ST31 more drought tolerant, and lines ST11 and ST6 responded well under both salinity and drought stress conditions as compared to the non-transgenic plants. Thus hva1 appears to confer a broad spectrum of tolerance under abiotic stress in mulberry.  相似文献   

9.
The biochemical and molecular responses of five commercially well-known pomegranate cultivars to severe water stress were studied. The cultivars were subjected to 14-day water stress by withholding irrigation, followed by re-watering for 7 days. Results showed clear differences in metabolites contents and activities of antioxidant enzymes among various pomegranate cultivars during severe water stress and recovery. According to our results, increased accumulation of proline in pomegranate was not related to osmotic adjustment during severe water stress. Except for ‘Ghojagh’, leaves grown under severe water stress conditions showed symptoms of oxidative stress such as reduced chlorophyll concentration. The improved performance of ‘Ghojagh’ under drought stress may be associated with an efficient osmotic adjustment. The up- or down regulated expression of cytosolic glutathione reductase (cytosolic GR) and glutathione peroxidase were observed under drought conditions. Moreover, the suppressed expression of cytosolic GR was also noted. Comparatively, ‘Rabab’ exhibited higher antioxidant capacity and an efficient ROS-scavenging mechanism under drought stress. Lower levels of membrane lipid peroxidation in ‘Ghojagh’ and ‘Rabab’ under drought stress and the marked reduction of malondialdehyde concentration after re-watering represents that these cultivars have a good tolerance to drought stress. As a first step towards the study of the biochemical and molecular responses of pomegranate plants to water stress, this research provides new information into the mechanisms of drought tolerance in the plants.  相似文献   

10.
Plants produce an array of proteins as a part of a global response to protect the cell metabolism when they grow under environmental conditions such as drought and salinity that generate reduced water potential. The synthesis of hydrophilic proteins is a major part of the response to water deficit conditions. An increased expression of LEA proteins is thought to be one of the primary lines of defense to prevent the loss of intercellular water during adverse conditions. These LEA proteins are known to prevent aggregation of a wide range of other proteins. In this study we report the water stress induced protein aggregation and its abrogation followed by expression of group 1 and group 2 LEA proteins of water soluble proteomes in horsegram. Water stress caused an increased protein aggregation with magnitude and duration of stress in horsegram seedlings. Tissue-specific expression of LEA 1 protein decreased in the embryonic axis when compared to cotyledons in 24 h stressed seedlings. We found no cross reaction of LEA 1 with proteome of 48 h stressed embryonic axis and 72 h stressed root and shoot samples. However, LEA 2 antibodies were cross reacted with four polypeptides with different molecular mass in shoot tissue samples and found no reaction with root proteome as evidenced from immuno-blot analysis. The role of LEA proteins in relation to protein aggregation during water stressed conditions was discussed.  相似文献   

11.
植物抗旱和耐重金属基因工程研究进展   总被引:3,自引:0,他引:3  
干旱和重金属污染严重影响植物的生长发育.植物耐逆相关基因的克隆和功能鉴定研究,为通过基因工程途径提高植物的抗逆性奠定了理论基础.水分亏缺、高盐、低温和重金属胁迫都能诱导LEA(late embryogenesis abundant protein)基因的表达.转基因研究表明,LEA蛋白具有抗旱保护作用、离子结合特性以及抗氧化活性;水孔蛋白存在于细胞膜和液泡膜上,在细胞乃至整个植物体水分吸收和运输过程中发挥重要作用.干旱和盐胁迫促进水孔蛋白基因转录物的积累.过量表达水孔蛋白可增强水分吸收和运输,提高植物的抗旱能力.金属转运蛋白参与重金属离子的吸收、运输和累积等过程.这些蛋白基因在改良草坪草植物的抗旱节水和耐重金属能力等方面具有潜在的应用价值.  相似文献   

12.
13.
Abiotic stresses caused by adverse environmental conditions are responsible for heavy economic losses on pea crop, being drought one of the most important abiotic constraints. Development of pea cultivars well adapted to dry conditions has been one of the major tasks in breeding programs. The increasing food requirements drive the necessity to broaden the molecular basis of tolerance to drought to develop pea cultivars well adapted to dry conditions. We have used a shotgun proteomic approach (nLC‐MSMS) to study the tolerance to drought in three pea genotypes that were selected based on differences in the level of water deficit tolerance. Multivariate statistical analysis of data unraveled 367 significant differences of 700 identified when genotypes and/or treatment were compared. More than half of the significantly changed proteins belong to primary metabolism and protein regulation categories. We propose different mechanisms to cope drought in the genotypes studied. Maintenance of the primary metabolism and protein protection seems a strategy for drought tolerance. On the other hand susceptibility might be related to maintenance of the homeostatic equilibrium, a very energy consuming process. Data are available via ProteomeXchange with identifier PXD004587.  相似文献   

14.
植物在进化过程中针对干旱、高盐和高低温等逆境胁迫形成了多种适应机制, 植物类受体激酶作为重要的细胞信号传递分子在植物生长和抗逆境胁迫中发挥着重要功能。该文发现一个具有S位点的类受体激酶基因OsSRL可能参与水稻(Oryza sativa)的干旱胁迫反应。利用RNAi技术降低OsSRL的表达水平后, 转基因植株抗旱性增强, 并表现出幼苗存活率、叶绿素含量及鲜重增加等表型。进一步的研究表明30%PEG和100 μmol·L–1ABA可诱导OsSRL基因表达, 利用RNAi降低其表达导致干旱诱导基因RAB16A及LEA3表达水平明显增加。表达模式分析发现OsSRL在胚芽、胚根、根、茎节以及花中表达。以上结果表明, OsSRL表达水平的降低增强植物的干旱耐受性, 其作为一个S-位点样类受体激酶可能参与了水稻对干旱胁迫的反应。  相似文献   

15.
Protein breakdown and recycling, which depend on the levels of proteolytic enzymes, are an essential part of the plant response to environmental stress. In order to study changes in the activity of proteases in Phaseolus vulgaris L. subjected to water deficit, three cultivars of European origin that exhibit different degrees of sensitivity to drought were chosen on the basis of changes in water potential, psiw, water and protein contents of leaves during progressive water deficit, and loss of membrane integrity after osmotic stress. Twenty-day-old plants were subjected to water deficit by withholding irrigation. Specific enzyme activities in leaf extracts were determined for plants under different degrees of drought stress using different substrates and protease inhibitors. Proteolytic activities were partially characterized by gel exclusion chromatography. Activities of two of the three identified serine proteinases changed under water deficit. The activity of the one with apparent molecular mass of approximately 65 kDa was observed to increase progressively with increasing withdrawal of water in the more sensitive cultivars, but to decrease in the more resistant cultivar. The same activity was elevated in senescent leaves. Under conditions of severe water deficit, the most sensitive cultivar exhibited a marked increase in the activity of two different aminopeptidases, while the more resistant cultivar showed a significant decrease in the activity of these aminopeptidases. These results point to complex and probably specific roles for different proteases in the plant response to drought.  相似文献   

16.
Two wheat (Triticum aestivum) cultivars, C306 (drought tolerant) and PBW343 (drought susceptible) were compared for their response to exogenous ABA, water stress (WS) and combined (ABA plus WS) during their seedlings growth. Their responses were studied in the form of seedlings growth, antioxidant potential of roots and shoots and expression levels of LEA genes in shoots. ABA treatment led to increase in levels of ascorbate, ascorbate to dehydroascorbate ratio, antioxidant enzymes and decreases in levels of dehydroascorbate, malondialdehyde (MDA). Decrease in biomass, ascorbate contents, ascorbate to dehydroascorbate ratios and antioxidant enzymes was more in PBW343 than in C306 under WS. Dehydroascorbate and MDA levels were higher in PBW343 than in C306 under WS. ABA plus WS improved some of these features from their levels under WS in PBW343. Proline contents were not increased significantly under ABA in both cultivars. Out of ten LEA genes studied, six LEA genes were induced more under WS than under ABA in C306 but equally induced in PBW343. Four LEA genes were induced earlier in PBW343 but later in C306. Wdhn13 was induced more under ABA than under WS in C306 while it was non-responsive to both stresses in PBW343.  相似文献   

17.
18.
Plant adaptation to drought has been extensively studied at many scales from ecology to molecular biology across a large range of model species. However, the conceptual frameworks underpinning the definition of plant strategies, and the terminology used across the different disciplines and scales are not analogous. ‘Drought resistance’ for instance refers to plant responses as different as the maintenance of growth and productivity in crops, to the survival and recovery in perennial woody or grassland species. Therefore, this paper aims to propose a unified conceptual framework of plant adaptive strategies to drought based on a revised terminology in order to enhance comparative studies. Ecological strategies encapsulate plant adaptation to multidimensional variation in resource variability but cannot account for the dynamic and short‐term responses to fluctuations in water availability. Conversely, several plant physiological strategies have been identified along the mono‐dimensional gradient of water availability in a given environment. According to a revised terminology, dehydration escape, dehydration avoidance, dehydration tolerance, dormancy, and desiccation tolerance are clearly distinguishable. Their sequential expression is expressed as water deficit increases while cavitation tolerance is proposed here to be a major hydraulic strategy underpinning adaptive responses to drought of vascular plants. This continuum of physiological strategies can be interpreted in the context of the ecological trade‐off between water‐acquisition vs. water‐conservation, since growth maintenance is associated with fast water use under moderate drought while plant survival after growth cessation is associated with slow water use under severe drought. Consequently, the distinction between ‘drought resistance’ and ‘drought survival’, is emphasized as crucial to ensure a correct interpretation of plant strategies since ‘knowing when not to grow’ does not confer ‘drought resistance’ but may well enhance ‘drought survival’. This framework proposal should improve cross‐fertilization between disciplines to help tackle the increasing worldwide challenges that drought poses to plant adaptation.  相似文献   

19.
《Plant science》2007,173(6):660-669
The present study deals with the characterization of genes encoding translation initiation factor 3 subunit g (TaeIF3g) and vesicle-associated membrane protein associated-protein (TaVAP), and how their expression is altered during water stress in the drought tolerant (C-306) and susceptible (HD-2329) cultivars of wheat. Bioinformatics analysis revealed that the TaeIF3g gene consists of an open reading frame (ORF) of 870 nucleotides encoding for a protein of 290 amino acid residues, with a likely molecular mass and pI of 31.47 kDa and 6.89, respectively. The TaVAP cDNA consists of an ORF of 714 nucleotides encoding for a protein of 238 amino acid residues having deduced molecular mass and pI of 25.75 kDa and 7.56, respectively. The changes in expression of the two genes in flag leaf and developing grains were studied in response to drought stress at 15 days post anthesis (DPA). The expression of TaeIF3g and TaVAP in the flag leaf, after increasing in response to mild drought stress, decreased under severe stress conditions in C-306, whereas on the contrary, it persisted in cv. HD-2329. Furthermore, the expression of TaeIF3g and TaVAP in response to drought stress was affected in a coordinated manner in leaf of both the cultivars. The effect of drought on expression of TaeIF3g and TaVAP was also different in the grains of the two cultivars thus implying that the adaptive mechanisms operating in the tissues of tolerant and susceptible cultivars are different.  相似文献   

20.
长春花Crlea基因的克隆及原核表达初步分析   总被引:3,自引:2,他引:1  
晚期胚胎丰富(Late Embryogenesis Abundant, LEA)蛋白是植物在干旱胁迫下响应并被描述为具有潜在的抗旱功能的一类重要的抗旱蛋白。通过建立干旱胁迫下长春花(Catharanthus roseus)的cDNA文库并进行测序筛选分析,首次分离得到CrleaCrlea for Catharanthus roseus late embryogenesis abundant)全长基因。该基因具有492 bp的开放读码框,编码163个氨基酸,其中偏性氨基酸含量占总蛋白的55.9%。同源性分析表明该假定蛋白与胡萝卜(Daucus carota)LEA DC3 的同源性达69%。亲水性分析表明具有极强的亲水性。为进一步验证CrLEA蛋白的功能,构建了Crlea基因的原核表达载体并在大肠杆菌中对其表达进行了分析。结果表明,原核载体成功的表达了CrLEA蛋白,亲水性实验及热稳定性实验表明CrLEA蛋白具有极强的亲水性和热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号