首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In the present study we examine the effects of the drug hadacidin (N-formyl-N- hydroxyglycine) on pinocytosis in the eukaryotic microorganism dictyostelium discoideum. At concentrations of up to approximately 8 mg/ml, hadacidin inhibited the rate of pinocytosis of fluorescein isothiocyanate (FITC) dextran in cells in growth medium in a concentration-dependent manner but had no effect on cells in starvation medium. Because hadacidin also inhibits cellular proliferation at this concentration, the relationship between growth rate and pinocytosis was studied further using another drug, cerulenin, to produce growth-arrest. These experiments showed no changes in the rate pinocytosis even after complete cessation of cellular proliferation. Other studies showed that the transfer of cells from growth to starvation medium reduced the rate of pinocytosis by approximately 50 percent. A reduction of similar magnitude occurred if cells were transferred from growth to starvation medium containing hadacidin. Also, no additional reduction in pinocytosis occurred when cells that had been treated with hadacidin were transferred to starvation medium containing hadacidin. These cells were able to take up [(14)C]hadacidin in the starvation medium. In contrast to the results with hadacidin-treated cells, cells in a cerulenin-induced state of growth-arrest when transferred to starvation medium exhibited the same 50 percent reduction in pinocytosis observed in cells not previously exposed to either drug. Cells treated with azide, in either growth or starvation medium, exhibited an immediate inhibition of all pinocytotic activity. After the transfer of log-phase cells to starvation medium supplemented with glucose, the reduction in rate was only approximately 10-15 percent. In contrast, a 50 percent reduction was observed after supplementation of starvation medium with sucrose, KCl, or concanavalin A. Maintaining the cells in growth medium containing hadacidin for as long as 16 h had no effect on the rate at which cells aggregated. These results are consistent with the conclusion that D. discoideum exhibits two types of pinocytotic activity: one that is nutrient dependent and the other independent of nutrients. This latter activity persists in starvation medium and is unaffected by hadacidin, whereas the nutrient-dependent activity is present in growth medium and is inhibited by hadacidin.  相似文献   

2.
Continuous phase-contrast observations have been made on macrophages following exposure to chloroquine. The initial abnormality is the appearance in the Golgi region of small vacuoles with an intermediate density between that of pinosomes and granules. Over the course of 1–2 hr these vacuoles grow larger and accumulate amorphous material or lipid. Pinosomes or granules frequently fuse with the toxic vacuoles. Chloroquine derivatives can be seen by fluorescence microscopy; the drug is rapidly taken up by macrophages and localized in small foci in the Golgi region. Chloroquine continues to produce vacuoles when pinocytosis is suppressed. Electron microscopic studies of chloroquine effects on macrophages preincubated with colloidal gold to label predominately pinosomes or granules suggest that toxic vacuoles can arise from unlabeled organelles. Later vacuoles regularly acquire gold label, apparently by fusion, from both granules and pinosomes. L cells also develop autophagic vacuoles after exposure to chloroquine. Smooth endoplasmic reticulum apparently is involved early in the autophagic process in these cells. Information now available suggests an initial action of chloroquine on Golgi or smooth endoplasmic reticulum vesicles, and on granules, with alterations in their membranes leading to fusion with one another and with pinosomes.  相似文献   

3.
Changes in pH are measured in pinosomes and phagosomes of single specimens of the giant, free-living ameba, Chaos carolinensis. Measurements of pH are made microfluorometrically, as previously described (Heiple and Taylor. 1980. J. Cell Biol. 86:885-890.) by quantitation of fluorescence intensity ratios (Ex489nm,/Ex452nm, Em520- 560nm from ingested fluorescein thiocarbamyl (FTC)-ovalbumin. After 1 h of pinocytosis (induced in acid solution), FTC-ovalbumin is found in predominantly small ( less than or equal to 5 micrometers in diameter), acidic (pH less than or equal to 5.0-6.2) vesicles of various shape and density. As the length of ingestion time increases (up to 24 h), the probe is also found in vesicles of increasing size (up to 100 micrometers in diameter), increasing pH (up to pH approximately 8.0), and decreasing density. Co-localization of fluorescein and rhodamine fluorescence, after a pulse-chase with fluorescein- and rhodamine- labeled ovalbumin, suggests vesicle growth, in part, by fusion. The pH in a single phagosome is followed after ingestion of ciliates in neutral solutions of FTC-ovalbumin. A dramatic acidification (delta pH greater than or equal to - 2.0) begins within 5 min of phagosome formation and appears to be complete in approximately 20 min. Phagosomal pH then slowly recovers to more neutral values over the next 2 h. pH changes observed in more mature populations of pinosomes within a single cell may reflect those occurring within a single phagosome. Phagosomal and pinosomal pH changes may be required for lysosomal fusion and may be involved in regulation of lysosomal enzyme activity.  相似文献   

4.
We have measured changes of pH in a protein's microenvironment consequent on its binding to the cell surface and incorporation into pinosomes. Changes of pH were measured from single, living cells and selected regions of cells by the fluorescence ratio technique using a photon-counting microspectrofluorimeter. The chemotactic agent and pinocytosis inducer, ribonuclease, labeled with fluorescein (FTC- RNase), adsorbed to the surface of Amoeba proteus, and was pinocytosed by cells in culture media at pH 7.0. The FTC-RNase entered an apparently acidic microenvironment, pH approximately 6.1, upon binding to the surface of amoebae. Once enclosed within pinosomes, this protein's microenvironment became steadily more acidic, reaching a minimum of pH approximately 5.6 in less than 10 min. FTC-RNase pinocytosed by the giant amoeba, Chaos carolinensis, entered pinosomes whose pH was correlated with their cytoplasmic location during the initial 30-40 min after pinocytosis. The majority of pinosomes containing FTC-RNase clustered in the tail ectoplasm of C. carolinensis during this interval and had a pH of approximately 6.5; those released into endoplasm and carried into the tip of cells had a pH below 5.0. As pinosomes became distributed at random in C. carolinensis (1-2 h after initial pinocytosis), differences in pH between tip and tail pinosomes vanished. We have also measured the pH within single phagosomes of A. proteus. Phagosomal pH dropped steadily to approximately 5.4 within 5 min after particle ingestion in 70% of the cells measured, and reached this level of acidity within 10 min in 90% of the cells measured. By contrast, stain for the lysosomal enzyme, acid phosphatase, was evident within only 20% of 5-min-old phagosomes visualized by light microscopy, and within only 40% of 10-min-old phagosomes. A microfluorimetric assay was used to simultaneously record changes in pH, and the initial deposition of lysosomal esterases, within phagosomes of single, living Amoeba proteus. Near complete acidification of the phagosome was recorded from some cells before phagosomal fusion was evident by this microfluorimetric assay. From other cells, however, continued acidification of phagosomes was recorded after lysosomal fusion was initiated. We conclude that acidification of phagosomes by A. proteus is initiated but not necessarily completed prior to phagosome-lysosome formation, and that the two events are closely linked in time. Initial acidification of endosomes is a property intrinsic to the plasma membrane which envelops particles at the cell surface, rather than the result of lysosomal fusion with phagosomes.  相似文献   

5.
6.
Quantification of endocytosis-derived membrane traffic   总被引:11,自引:0,他引:11  
The main data covered by this article have been summarized in Table I. A fairly uniform picture is obtained for endocytosis-derived membrane transfer and compartmentation. This may be due to the limited amount of information and the resulting low resolution. Data on mainly three cell types are presented: macrophages, fibroblasts and amoebae. The data vary as much for one cell type as between different cells. Therefore, no possible differences related to cell function emerge. More detailed data, for more cell types, may change the picture. The values for cell surface area, although significantly different in absolute terms (column S in Table I), are rather similar when related to cell diameter, all being about 3-fold in excess of the surface area of the smooth sphere of comparable volume (column xi in Table I). The rate of plasma membrane internalization for macrophages and amoebae both professional phagocytes, is about 2 cell surface area equivalents per h or more. This may be somewhat higher than for fibroblasts (column PM/h in Table I). The average residence time for membrane on the cell surface, therefore, is about 30 min. A most interesting finding seems to be the rather uniform values obtained for the average size (volume weighted) of primary pinosomes, being about 0.3 micron in diameter (column phi-Internalization in Table I). Due to their rapid increase in size as a result of fusion (cf. Fig. 2), it has not been feasible to directly measure the size of primary pinosomes by morphometric means. The values in Table I, give no information on the size distributions of primary pinosomes and on whether these consist of one or more size classes. The steady-state average diameter of pinosomes is noticeably larger than that of primary pinosomes (column phi-pinosomes in Table I; cf. Table II for Acanthamoebae). The corresponding decrease in surface-to-volume ratio can make about 50% of pinosomal membrane available for recycling directly from this membrane compartment. Membrane recycling from the pinosomal compartment occurs after an average residence time of about 3 min for macrophages and 4-6 min for fibroblasts (column tau-pinosomes in Table I). The relative pool size of intracellular membranes participating in shuttling to and from the cell surface is significantly different for animal cells and amoebae (column rho in Table I). For macrophages, fibroblasts, CHO cells, and mast cells, this intracellular membrane pool amounts to about 10-20% the plasma membrane area, compared to 150-200% in the case of amoebae.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Rat embryo fibroblasts cultured in the presence of monensin exhibited an inhibited uptake of horseradish peroxidase. The inhibition was detected after 3 h, after which time the cells became increasingly vacuolated; the concentration of monensin required to inhibit pinocytosis (0.4 microM for half-maximum inhibition at 18 h) was similar to that found by others to inhibit secretion. Both the exchange of 5'-nucleotidase between the membranes of cytoplasmic organelles and the cell surface and the internalization of anti-5'-nucleotidase bound to the cell surface were inhibited by approximately 90% in monensin- treated cells. The effects of monensin were reversible: cells cultured first with monensin, and then in fresh medium, exhibited control levels of horseradish peroxidase uptake, exchange of 5'-nucleotidase, and internalization of anti-5'-nucleotidase bound to the cell surface. After monensin treatment, the median density of both galactosyl transferase and 5'-nucleotidase increased from 1.128 to 1.148, and the median density of both N-acetyl-beta-glucosaminidase and horseradish peroxidase taken up by endocytosis decreased from 1.194 to 1.160. The results indicate that monensin is a reversible inhibitor of pinocytosis and, presumably, therefore, of membrane recycling. They suggest that the inhibition of membrane recycling occurs at a step other than the fusion of pinocytic vesicles with lysosomes and is perhaps a consequence of an effect of the ionophore on the Golgi complex.  相似文献   

8.
The present study uses the lysosomotropic drug chloroquine to investigate the mechanisms by which exogenous [35S]cystine is able to label the intracellular (intralysosomal) cystine pool(s) in cystinotic fibroblasts. When cystinotic fibroblasts were labelled for short periods of time (8 h or less), chloroquine (20 microM) inhibited the labelling of the intracellular cystine pool(s). However, when the cells were labelled for longer periods of time (24 h or more) chloroquine stimulated the labelling of the intracellular cystine pool(s). The short-term effect was selectively abolished when the cells were washed free of chloroquine, while the long-term effect was selectively abolished when the medium was depleted of cystine. Two routes of translocation of exogenous cystine to the lysosomes could be defined. One route was fast, had a low capacity, was inhibited by chloroquine and increased with increasing medium pH, while the other route was slow, had a high capacity, was stimulated by chloroquine and was more active at low pH. The former pathway probably consisted of plasma membrane transport of cystine into the cytosol followed by direct or indirect transport into the lysosomes. The latter route possibly consisted of pinocytosis with fusion of the cystine-containing pinosomes with lysosomes.  相似文献   

9.
Fibroblasts exposed to higher doses of cytochalasin accumulate very big discrete endoplasmic vacuoles, the membrane of which is derived by internalization of plasmalemma. Morphometry confirms that the amount of surface interiorized is equal to the difference between the original cell surface area (before CD) and the reduced surface area measurable after CD-induced rounding. Correspondingly, there is a nearly two-fold increase in the activity of the ectoenzyme 5'-nucleotidase (a marker for plasma membrane) internally within the cytoplasm, after treatment with CD. Macrovacuolation increases cell volume by approximately 30%. Surface membrane is internalized as micropinocytotic vesicles at a rate measurable by the accumulation of HRP, a marker of fluid-phase pinocytosis. Uptake of HRP is shown to be enhanced at all times during exposure to CD, and is balanced by accelerated exocytic recycling of membrane except during a phase (approximately 4-8 hr) in which pinocytic uptake exceeds exocytosis. Vesicular membrane accumulated intracellularly in this period is retained in the endoplasm, and by successive fusions forms vacuoles in close approximation to microfilament aggregates. Once established, this new macrovacuolar membrane compartment is in dynamic equilibrium with the cell surface, and its membrane is cycled like the plasma membrane, in a mutual exchange of pinosomes between the several vacuoles and the cell surface. In drug-free medium vacuole membrane apparently reverts to the surface by pinocytotic recycling, and the cells recover normal characteristics 4-6 hr after withdrawal of cytochalasin.  相似文献   

10.
Role of Contractile Microfilaments in Macrophage Movement and Endocytosis   总被引:54,自引:0,他引:54  
PHAGOCYTOSIS of bacteria and other large particles and pinocytosis of colloids—two processes collectively termed endocytosis—are among the characteristic properties of macrophages. When mouse peritoneal macrophages in culture are observed by phase contrast microscopy, most small endocytotic vesicles (pinosomes) are seen to be formed in the region of ruffled membrane activity, usually in a pseudopod1. The phase-lucent pinosomes move rapidly towards the Golgi region where they unite with phase-dense granules to form secondary lysosomes. Although there is evidence that both phagocytosis and pinocytosis in macrophages have a high temperature coefficient and require metabolic energy1, the mechanism of endocytosis is unknown. Clearly, movement of the plasma membrane and directional movement of pinosomes is involved. During the past few years attention has been drawn to the apparent association in many cells between movement and the presence of contractile microfilaments of about 50 Â diameter2,3. Some of these are actin-like and can bind heavy meromyosin to give distinctive “arrowhead” structures in electron micrographs4. One of us (S. de P., in preparation) has found that the peripheral or cortical cytoplasm of macrophages contains a network of microfilaments, some of which may be inserted into the plasma membrane. These filaments bind heavy meromyosin (Figs. 1 and 2) and details of their structure and disposition will be published later.  相似文献   

11.
Geometry-based mechanisms have been proposed to account for the sorting of membranes and fluid phase in the endocytic pathway, yet little is known about the involvement of the actin-myosin cytoskeleton. Here, we demonstrate that Dictyostelium discoideum myosin IB functions in the recycling of plasma membrane components from endosomes back to the cell surface. Cells lacking MyoB (myoA(-)/B(-), and myoB(-) cells) and wild-type cells treated with the myosin inhibitor butanedione monoxime accumulated a plasma membrane marker and biotinylated surface proteins on intracellular endocytic vacuoles. An assay based on reversible biotinylation of plasma membrane proteins demonstrated that recycling of membrane components is severely impaired in myoA/B null cells. In addition, MyoB was specifically found on magnetically purified early pinosomes. Using a rapid-freezing cryoelectron microscopy method, we observed an increased number of small vesicles tethered to relatively early endocytic vacuoles in myoA(-)/B(-) cells, but not to later endosomes and lysosomes. This accumulation of vesicles suggests that the defects in membrane recycling result from a disordered morphology of the sorting compartment.  相似文献   

12.
Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.  相似文献   

13.
Summary The present study was performed to investigate whether membrane recycling via the dense apical tubules in cells of renal proximal tubules could be modified after exposure to large amounts of cationized ferritin. Proximal tubules in the rat kidney were microinfused in vivo with cationized ferritin for 10 or 30 min and then fixed with glutaraldehyde by microinfusion, or proximal tubules were microinfused with ferritin for 30 min and then fixed 2 h thereafter. The tubules were processed for electron microscopy, and the surface density and the volume density of the different cell organelles involved in endocytosis were determined by morphometry. The morphometric analyses showed that after loading of the endocytic vesicles with ferritin the surface density of dense apical tubules decreased to about 50% of the original value. However, 2 h later when ferritin had accumulated in the lysosomes the surface density of dense apical tubules had returned to control values. Furthermore, cationized ferritin was virtually absent from the Golgi region, indicating that the Golgi apparatus in these cells does not participate in membrane recycling. In conclusion, the present study shows that membrane recycling in renal proximal tubule cells can in part be inhibited by loading the endocytic vacuoles with ferritin.  相似文献   

14.
The heads of small adult snails, Helix aspersa, were injected with horseradish peroxidase (HRP) for one to five hours before extirpating the eyes and preparing them cytochemically for electron microscopy. There was internalization of tracer by pinocytic vesicles (pinosomes) at the bases of types-I and -II sensory cells, ganglion cells and, in lesser amounts, by pigmented supportive cells. Vesicles and vacuoles filled with HRP were transported in two directions: lensward as far distad as the ends of the cells (retrograde) and brainward down the optic nerve (anterograde). We believe that the numerous reacted vacuoles in the cell somata are formed by fusion of vesicles, tubules and C-shaped organelles filled with tracer; we present evidence that they become secondary lysosomes. Sensory cell type II possesses more HRP-reacted vacuoles distally than the other retinal cells. Other vesicles are also described. There was no uptake of tracer by the distal ends of the retinal cells following injection HRP into the hemolymph. The swelling of the optic nerve, immediately behind the eye, contains more HRP-filled pinosomes and vacuoles than does the nerve below the dilatation. The significance of endocytosis and transport of pinosomes within the eye and down the optic nerve is discussed.  相似文献   

15.
The antitumor agent hadacidin (N-formyl-hydroxyamino-acetic acid), at 4 mM, inhibited the multiplication of clone 4 Madin Darby canine kidney (MDCK) cells within 24 hr. Growth resumed rapidly upon replacement of hadacidin with aspartate, an observation consistent with the drug's action as a competitive inhibitor of adenylosuccinate synthetase, an enzyme in adenine nucleotide biosynthesis. Data indicate that the drug-treated cells were arrested in S phase of the cell cycle. Accompanying inhibition of multiplication was a 16-fold increase in the area occupied by the cells and a refractoriness to release by treatment with trypsin. None of these changes occurred when 0.5 mM adenosine was included in the incubation mixture containing the inhibitor. Hadacidin decreased the adenosine triphosphate (ATP) and cyclic adenosine monophosphate (cAMP) content of the cells as well as the rate at which 3H-leucine was incorporated into protein. In the presence of 1 mM dibutyryl cAMP and theophylline, the drug had no effect on cell division and protein synthesis. The data suggest that, in clone 4 MDCK cells, the effects of hadacidin are mediated by diminishing the level of cAMP.  相似文献   

16.
Perinuclear vesicles (estimated diameter less than 0.15 micron), too small to be seen in living mouse macrophages by direct phase-contrast microscopy, could be detected by darkfield microscopy thanks to their rapid non-saltatory movements at 37 degrees C, contrasting with the slower saltations of accompanying phase-visible larger vesicles (0.25-0.5 micron, presumed secondary lysosomes). The movements of these 'small visicles' also differed from those of the 'larger visicles' in their responses to changes in temperature, and to chemical agents known to inhibit both the saltations of secondary lysosomes and the latter's fusion with phagosomes. Thus the 'larger vesicles' stopped moving at 25 degrees C, the small ones did not; both stopped at 18 degrees C. The 'small vesicles' continued to move actively after cell uptake of the polyanion poly-D-glutamic acid, while the saltations of the 'larger vesicles' were markedly slowed; both sets of vesicles stopped after uptake of ammonium chloride. Degranulation of the small vesicles paralleled that of the larger, while simultaneously observed preformed pinosomes (labelled with fluorescent wheat germ agglutinin (WGA) appeared to be unaffected. On the basis also of refractivity, location and speed the 'small vesicles' are considered not to be pinosomes, but probably to be lysosomes. The question of whether they are a subgroup of small immature secondary lysosomes or primary lysosomes (0.05-0.08 micron) is discussed. The broad spectrum of movement inhibited by ammonia in macrophages raises the possibility that this weak base inhibits movements of all lysosomes. Further characterization of these 'small vesicles' requires their relation to be defined to the small particles in other cell types (especially in axoplasm) which have been detected by video-enhanced microscopy.  相似文献   

17.
Lucifer Yellow CH (LY) is an excellent probe for fluid-phase pinocytosis. It accumulates within the macrophage vacuolar system, is not degraded, and is not toxic at concentrations of 6.0 mg/ml. Its uptake is inhibited at 0 degree C. Thioglycollate-elicited mouse peritoneal macrophages were found to exhibit curvilinear uptake kinetics of LY. Upon addition of LY to the medium, there was a brief period of very rapid cellular accumulation of the dye (1,400 ng of LY/mg protein per h at 1 mg/ml LY). This rate of accumulation most closely approximates the rate of fluid influx by pinocytosis. Within 60 min, the rate of LY accumulation slowed to a steady-state rate of 250 ng/mg protein per h which then continued for up to 18 h. Pulse-chase experiments revealed that the reduced rate of accumulation under steady-state conditions was due to efflux of LY. Only 20% of LY taken into the cells was retained; the remainder was released back into the medium. Efflux has two components, rapid and slow; each can be characterized kinetically as a first-order reaction. The kinetics are similar to those described by Besterman et al. (Besterman, J. M., J. A. Airhart, R. C. Woodworth, and R. B. Low, 1981, J. Cell Biol. 91:716-727) who interpret fluid-phase pinocytosis as involving at least two compartments, one small, rapidly turning over compartment and another apparently larger one which fills and empties slowly. To search for processes that control intracellular fluid traffic, we studied pinocytosis after treatment of macrophages with horseradish peroxidase (HRP) or with the tumor promoter phorbol myristate acetate (PMA). HRP, often used as a marker for fluid-phase pinocytosis, was observed to stimulate the rate of LY accumulation in macrophages. PMA caused an immediate four- to sevenfold increase in the rate of LY accumulation. Both HRP and PMA increased LY accumulation by stimulating influx and reducing the percentage of internalized fluid that is rapidly recycled. A greater proportion of endocytosed fluid passes into the slowly emptying compartment (presumed lysosomes). These experiments demonstrate that because of the considerable efflux by cells, measurement of marker accumulation inaccurately estimates the rate of fluid pinocytosis. Moreover, pinocytic flow of water and solutes through cytoplasm is subject to regulation at points beyond the formation of pinosomes.  相似文献   

18.
Prelysosomal acidic vacuoles in Dictyostelium discoideum   总被引:5,自引:3,他引:2       下载免费PDF全文
We have examined the ameba Dictyostelium discoideum for evidence of a discrete, prelysosomal, acidic receiving compartment in endocytosis. We observed in the cytoplasm abundant round vacuoles with diameters up to 2 microns that concentrated acridine orange by a process inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). They were therefore taken to be acidic. The vacuoles were observed to fuse nearly quantitatively with primary phagosomes over 30 min and thereby to confer upon them the ability to accumulate acridine orange. The entry into lysosomes of phagocytic cargo occurred later. In the absence of phagocytosis, almost all of the acidic vacuoles rapidly accumulated fluorescent markers that had either been covalently coupled to the cell surface or fed as the soluble dextran conjugate. Therefore, these vacuoles also lie on the pathway of pinocytosis. A prominent subcellular ATPase activity inhibited by 25 microM NBD-Cl co-distributed on sucrose equilibrium density gradients with vacuoles capable of concentrating acridine orange in vitro. The peak was broad and more buoyant than that bearing lysosomal acid hydrolases, which contained only a minor amount of this ATPase. Also migrating in the buoyant peak were internalized plasma membrane markers; e.g., 3H-galactose had been covalently coupled to the surface of intact cells and allowed to enter pinosomes. We conclude that in D. discoideum an extensive prelysosomal vacuolar compartment provides the proton pumps that acidify both phagosomes and pinosomes.  相似文献   

19.
Insulin stimulates translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage compartment to the plasma membrane in fat and skeletal muscle cells. At present, the nature of the Glut4 storage compartment is unclear. According to one model, this compartment represents a population of preformed small vesicles that fuse with the plasma membrane in response to insulin stimulation. Alternatively, Glut4 may be retained in large donor membranes, and insulin stimulates the formation of transport vesicles that deliver Glut4 to the cell surface. Finally, insulin can induce plasma membrane fusion of the preformed vesicles and, also, stimulate the formation of new vesicles. In extracts of fat and skeletal muscle cells, Glut4 is predominantly found in small insulin-sensitive 60-70 S membrane vesicles that may or may not artificially derive from large donor membranes during cell homogenization. Here, we use a cell-free reconstitution assay to demonstrate that small Glut4-containing vesicles are formed from large rapidly sedimenting donor membranes in a cytosol-, ATP-, time-, and temperature-dependent fashion and, therefore, do not represent an artifact of homogenization. Thus, small insulin-responsive vesicles represent the major form of Glut4 storage in the living adipose cell. Fusion of these vesicles with the plasma membrane may be largely responsible for the primary effect of insulin on glucose transport in fat tissue. In addition, our results suggest that insulin may also stimulate the formation of Glut4 vesicles and accelerate Glut4 recycling to the plasma membrane.  相似文献   

20.
Fusion of membrane vesicles has been implicated in many intracellular processes including the transport of proteins destined for secretion or storage. Vesicular transport coupled with membrane fusion has been demonstrated for rough endoplasmic reticulum to Golgi and Golgi to plasma membrane transport as well as receptor mediated endocytosis and receptor recycling. Recent studies with inhibitors suggest that metalloendoproteases may mediate a wide variety of intracellular fusion events. Thus, in order to examine the potential role of metalloendoproteases in both transport/secretion and endocytosis/recycling we have used selected dipeptide substrates to probe these processes in human HepG2 cells. Using pulse-chase labeling, immunoprecipitation, and polyacrylamide gel electrophoresis we show that transport and secretion of newly synthesized proteins along the exocytotic route were completely inhibited by substrate dipeptides (e.g. Cbz-Gly-Phe-amide, where Cbz is benzyloxycarbonyl) but not by irrelevant dipeptides (e.g. Cbz-Gly-Gly-amide). The effect was rapid, reversible, and specific. The secretory pathway was blocked between the rough endoplasmic reticulum and Golgi as well as Golgi and plasma membrane as judged by the status of N-glycosylation intermediates. In addition, these inhibitors specifically inhibited protein synthesis without alterations in cellular ATP concentrations. However, cell-free amino acid incorporation was not inhibited. Receptor-mediated uptake of asialoglycoproteins was specifically and reversibly inhibited by dipeptide substrates. This effect appears to be secondary to inhibition of recycling as neither ligand binding nor internalization were affected. Thus the present observations suggest that metalloendoprotease activity may be involved in the regulation of multiple intracellular pathways perhaps at the level of vesicular fusion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号