首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  To monitor the resistance of field populations of the diamondback moth Plutella xylostella in China to the insecticidal protein Cry1Ac, Cry1Ba and commercial formulation Bacillus thuringiensis var. kurstaki (Btk), six representative populations of the diamondback moth were collected from Shanghai, Shandong, Hubei, Hunan, Zhejiang and Guangdong provinces of China where crucifer crop plants are intensively planted. Bioassay results showed that the populations of the diamondback moth from different locations exhibited different levels of resistance, compared with a susceptible laboratory population. The Guangdong field population was 56.15- and 21.90-fold resistant to Cry1Ac and Btk, respectively. Shanghai, Hunan, Shandong and Zhejiang populations were 37.85-, 17.24-, 10.24- and 9.41-fold resistant to Cry1Ac, respectively, but were not resistant to Btk. The Hubei population did not show resistance to Cry1Ac and Btk. Almost all tested populations were susceptible to Cry1Ba, but the Guangdong population showed some tolerance to Cry1Ba with a LC50 of 0.69  μ g/ml which was 6.17-fold higher than that of the susceptible population. The results suggested that the complex resistance patterns of field populations of P. xylostella need to be considered for expression of Bt toxin genes in genetically-engineered crop plants and commercial formulations.  相似文献   

2.
Abstract:  Current recommendations to delay the evolution of resistance to Bacillus thuringiensis crops are that a minimum of 5–50% of a crop-growing region should include non- B. thuringiensis varieties as refuges. These recommendations are based in part on the assumption that resistance will be inherited as a recessive trait. Laboratory microcosm experiments are described with transgenic canola expressing Cry1Ac and a non-recessive Cry1Ac resistant population of the diamondback moth Plutella xylostella , in which the effect of different sizes of refugia (0%, 20% and 50%) on resistance was compared over five generations. The LC50 values for Cry1Ac increased markedly in the P. xylostella sub-populations with 0% (>100-fold) and 20% refugia (>35-fold) but showed little change (less than fivefold increase) with 50% refugia. The results support the idea that relatively high levels of refugia (non- B. thuringiensis varieties) may be required where resistance is not functionally recessive at the level of toxin expressed in the B. thuringiensis crop.  相似文献   

3.
 A synthetic Bacillus thuringiensis cry1C gene was transferred to three Korean cultivars of Chinese cabbage via Agrobacterium tumefaciens-mediated transformation of hypocotyl explants. Hygromycin resistance served as an efficient selective marker. The transformation efficiency ranged from 5% to 9%. Transformation was confirmed by Southern blot analysis, PCR, Northern analysis, and progeny tests. Many transgenic plants of the closed-head types (lines Olympic and Samjin) flowered in vitro. Over 50 hygromycin-resistant plants were successfully transferred to soil. The transgenic plants and their progeny were resistant to diamondback moths (DBM, Plutella xylostella), the major insect pest of crucifers world-wide, as well as to cabbage loopers (Trichoplusia ni) and imported cabbage worms (Pieris rapae). Both susceptible Geneva DBM and a DBM population resistant to Cry1A protein were controlled by the Cry1C-transgenic plants. The efficient and reproducible transformation system described may be useful for the transfer of other agriculturally important genes into Chinese cabbage. Received: 12 June 2000 / Revision received: 21 August 2000 / Accepted: 22 August 2000  相似文献   

4.
To determine whether field-selected resistance of diamondback moth (Plutella xylostella L.) (Lepidoptera: Plutellidae) to Bacillus thuringiensis is based on behavioral or physiological adaptation, we measured mortality, consumption, and movement of larvae from a susceptible and a resistant colony when placed on untreated and B. thuringiensis treated cabbage. Colonies did not differ in mortality, consumption, or movement on untreated cabbage. However, for a given amount of consumption of treated cabbage, resistant larvae had lower mortality than susceptible larvae, demonstrating that resistance had a physiological basis. The movement patterns could not account for the differences between colonies in survival. Resistant larvae did not avoid B. thuringiensis more than did susceptible larvae. Thus, we found no evidence for behavioral resistance.  相似文献   

5.
The present study was undertaken to determine the genetics of Cry1C resistance in Spodoptera litura. Selection of S. litura (Fab.) with Cry1C was done for eight generations to develop resistance. Reciprocal crosses between resistant and susceptible populations were made to understand the population genetics of Cry1C resistance in S. litura. Generation wise selection with Cry1C was evaluated for resistance development in S. litura. The LC50 of Cry1C was 0.14 µg/cm2 for the first selected generation and it increased to 23.98 µg/cm2 after eight selected generations, which is a 285.47-fold increase in resistance compared with the susceptible strain. The estimated realized heritability (h2) after eight generations of selection with Cry1C insecticidal protein was 0.44. The number of generations required for the tenfold increase in LC50 (1/R) was estimated to be 3.33. Response to Cry1C selection in S. litura was 0.30, the estimated selection differential was 0.69 and the pheonotypic standard deviation (dP) was 0.24. Reciprocal crosses between Cry1C resistant and susceptible strain of S. litura showed autosomal resistance.  相似文献   

6.
1. The stability of resistance to Bacillus thuringiensis Crystal (Cry) toxins in highly and moderately resistant sub‐populations of a Plutella xylostella field population (SERD4) was compared under laboratory conditions. The relative rate of decrease in resistance was greater in a highly resistant Cry1Ac‐selected population than in moderately resistant Cry1Ab‐ and Cry1Ca‐selected populations. 2. The intrinsic rate of population increase (rm) was similar in all populations tested. 3. These results suggest that there are no obvious overall fitness benefits as the frequency of the resistance alleles is reduced.  相似文献   

7.
BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were futile, but it was degraded by proteases with broad specificity indicating the presence of a peptide. Carbohydrate was detected by labeling with digoxigenin hydrazide following periodate oxidation. Mild alkaline hydrolysis destroyed toxin and antibody binding, suggesting O-linked glycans are involved in the activity. GC/MS composition analysis showed that the predominant sugars were galactose, glucose, and N-acetyl galactosamine with lesser amounts of N-acetyl glucosamine, glucuronic acid, xylose, and fucose. The carbohydrate moiety accounted for 73% of its total mass. Amino acid analysis showed a high content of aspartic/asparagine, threonine, and serine residues in the protein moiety. The purified glycoconjugate was not visualized using Coomassie or silver staining procedures, but stained "blue" using the cationic dye Stains-all. BTR-270 was labeled with biotin and used as a diagnostic probe for screening and identifying toxins that bind to the receptor. Toxin-binding kinetics obtained using a biosensor demonstrated that the receptor binds Cry1Aa and Cry1Ab toxins with high affinity, and displays a weaker affinity for Cry1Ac, in correlation with the toxicity of these toxins towards gypsy moth. Arch.  相似文献   

8.
We usedAgrobacterium tumefaciens to transform flowering stalk explants of five genotypes of broccoli with a construct containing the neomycin phosphotransferase gene and aBacillus thuringiensis (Bt) gene [CryIA(c) type] optimized for plant expression. Overall transformation efficiency was 6.4%; 181 kanamycin-resistant plants were recovered. Of the 162 kanamycin-resistant plants tested, 112 (69%) caused 100% morality of 1st-instar larvae of aBt-susceptible diamondback moth strain. Southern blots of some resistant transformants confirmed presence of theBt gene. Selected plants that gave 100% mortality of susceptible larvae allowed survival of a strain of diamondback moth that had evolved resistance toBt in the field. F1 hybrids between resistant and susceptible insects did not survive. Analysis of progeny from 26 resistant transgenic lines showed 16 that gave segregation ratios consistent with a single T-DNA integration. Southern analysis was used to verify those plants possessing a single T-DNA integration. Because these transgenic plants kill susceptible larvae and F1 larvae, but serve as a suitable host for resistant ones, they provide an excellent model for tests ofBt resistance management strategies.  相似文献   

9.
Many crops transformed with insecticidal genes isolated from Bacillus thuringiensis (Bt) show resistance to targeted insect pests. The concentration of Bt endotoxin proteins in plants is very important in transgenic crop efficacy and risk assessment. In the present study, changes in levels of Cry1Ac protein in the leaves of transgenic Bt oilseed rape (Brassica napus) carrying a Bt cry1Ac gene under the control of the cauliflower mosaic virus 35S promoter were quantified during vegetative growth by enzyme‐linked immunosorbent assay. Plants were grown in a glasshouse, sampled at 2, 4, 5 and 6 weeks, and the concentration of Cry1Ac was quantified in basal, top and previous top leaves. The mean concentration differed between sowing dates when Cry1Ac concentration was expressed as ng g?1 fresh leaf weight but not when expressed as ng mg?1 total soluble protein. It was demonstrated that Cry1Ac concentration increased significantly as the leaf aged, while the total soluble plant protein decreased significantly. Levels of Cry1Ac were therefore higher in leaves at the base of the plants than in leaves close to the growing point. However, even young leaves with very low Cry1Ac concentrations caused high mortality in the larvae of a Cry1Ac‐susceptible laboratory strain of the diamondback moth. The feeding area of leaves consumed by larvae in vivo and in situ was similar. Leaf damage caused by sampling (i.e. artificially) or by feeding of larvae did not affect the levels of Cry1Ac in the leaves under the experimental conditions in this study.  相似文献   

10.
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 μg Cry1Ac/g diet but killed by Cry1Ab at 0.5 μg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 μg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.  相似文献   

11.
1 The dispersal of susceptible insects between refuges and Bacillus thuringiensis (Bt) treated fields is the key to resistance management of Bt crops. Here we describe the opposite situation; the movement of Bt resistant Trichoplusia ni moths from over‐wintered, greenhouse populations in British Columbia (BC) exposed to high Bt use to neighbouring greenhouses where Bt sprays have not been used. 2 The spread of Bt resistance to non‐selected populations of T. ni, and the resulting increase in resistance, indicates a surprising level of dispersal of resistant moths among greenhouses even in the face of fitness costs. 3 Field populations of T. ni in BC are seasonal migrants from regions of California where Bt cotton is grown. In 2006, field populations surveyed along the migration path from California through Oregon were highly susceptible to Bt insecticides and, thus, showed no indication of selection for resistance among these source populations. 4 The arrival of the immigrant moths provides a potential source of susceptible individuals to dilute the levels of resistance in greenhouse populations in BC later in the summer, but this has not occurred. Thus, field populations in BC do not appear to serve as refuges to combat Bt resistance in greenhouse populations.  相似文献   

12.
[目的]分析苏云金芽孢杆菌的cry2A型芽孢期启动子对晶体蛋白Cry11Aa的协调作用和分子伴侣ORF1-ORF2对Cry11Aa表达的促进功能.[方法]3个包括cry11Aa编码区的重组质粒pHcy1、pHcy2和pHcy4被构建并电激转化到苏云金芽孢杆菌晶体缺陷株4Q7中,其中pHcy1质粒携带cry11Aa基因自身启动子和分子伴侣p19基因,pHcy2携带cry2A型芽孢期启动子和分子伴侣orf1-orf2基因,pHcy4质粒在pHcy1的上游插入了cry2A型芽孢期启动子和分子伴侣orf1-orf2基因.SDS-PAGE分析了Cry11Aa蛋白在各重组苏云金菌株中的表达情况,并通过生物测定确定了其对蚊虫的生物活性.[结果]SDS-PAGE结果表明,Cry11Aa蛋白在4Q7(pHcy1)和4QT(pHcy4)均获得了表达,在4Q7(pHcy2)中未检测到Cry11Aa蛋白,推测晶体蛋白Cry11A不能利用cry2A型启动子进行表达调控;Cry11Aa蛋白在等体积4Q7(pHcy4)培养液中的表达量是4Q7(pHcy1)菌株的1.25倍,暗示着分子伴侣ORF1-ORF2在某种程度上能提高Cry11Aa的蛋白表达量.4Q7(pHcy1)和4Q7(pHcy4)形成的Cry11Aa蛋白晶体的形状和大小相似,两者对致倦库蚊的生物活性没有明显差异,LC50s分别为59.33 ng/mL和66.21 ng/mL,.[结论]推测晶体蛋白Cry11A能否成功表达与其使用启动子的类型和两者的协调配合有关.分子伴侣ORF1-ORF2虽然在某种程度上能提高Cry11Aa的蛋白表达量,但对提高Cry11Aa蛋白的杀蚊毒力没有显著性帮助.  相似文献   

13.
The BKBT strain of Helicoverpa armigera was derived from a susceptible BK77 strain (collected from Bouake, Cote D’Ivoire in 1977) through 30 generations of selection with activated Bacillus thuringiensis δ‐endotoxin Cry1Ac. Unlike recessive inheritance of Cry1Ac resistance in H. armigera from previous reports, resistance to activated Cry1Ac in the BKBT strain is dominant. A backcross approach was used to map dominant resistance to Cry1Ac in the BKBT strain. One hundred and forty‐seven informative amplified fragment length polymorphism (AFLP) DNA markers covered all 31 linkage groups of H. armigera. Five AFLP markers linked to Cry1Ac resistance in the BKBT strain were on the same autosomal linkage group, which is the only linkage group contributing dominant Cry1Ac resistance in the BKBT strain of H. armigera.  相似文献   

14.
采用ELISA方法检测了实验室汰选的对Cry1Ab产生107倍抗性的亚洲玉米螟Ostrinia furnacalis (Guenée)种群与敏感种群3龄幼虫取食表达Cry1Ab杀虫蛋白的Bt玉米心叶后,杀虫蛋白在幼虫体内的分布情况。结果表明:Cry1Ab杀虫蛋白在抗性种群幼虫中的组织分布情况与敏感种群相近,主要存在于中肠组织和血淋巴中。抗、感种群中均以含有内含物的中肠组织中含量最高,分别为277.2 ng/g 和104.9 ng/g;其次为血淋巴,分别为93.7 ng/g 和69.5 ng/g;不含内含物的中肠组织中52.7 ng/g 和40.1 ng/g;在丝腺和马氏管组织的含量很低,丝腺中分别为8.5 ng/g和11.7ng/g,而马氏管中分别为6.7 ng/g和6.5 ng/g。脂肪体、生殖器官中未检测到杀虫蛋白。抗性种群中肠组织(含有内含物和不含内含物)中Cry1Ab的含量显著高于敏感种群。幼虫期取食过Bt玉米的亚洲玉米螟发育的蛹、成虫及其卵中均不含杀虫蛋白,说明Bt杀虫蛋白不会通过幼虫取食向蛹、成虫及卵传递。  相似文献   

15.
We produced 49 broccoli plants (Brassica oleracea L. ssp. italica) containing a Bacillus thuringiensis cry1Ab gene under control of the chemically inducible PR-1a promoter from tobacco. Most of them showed substantial or complete control of neonate diamondback moth larvae, regardless of whether the transgene was induced or not. Ten plants were selected for detailed study via northern and western analysis and insect bioassays. They expressed the cry1Ab gene and gave complete insect control when treated with the chemical inducers INA (2,6-dichloroiso-nicotinic acid) or BTH (1,2,3-benzothiadiazole-7-carbothioic acid S-methyl ester); however, leaves treated with water alone were also partially or completely protected from insect damage. Transgenic progeny plants showed greater inducibility than primary transformants at the molecular level. Two progeny lines produced cry1Ab mRNA and Cry1Ab protein and gave insect control only after induction, both when detached leaves and intact plants were tested. The relevance of these results to resistance management strategies is discussed.  相似文献   

16.
In an effort to develop a chemically inducible system for insect management, we studied production of Cry1Ab Bacillus thuringiensis (Bt) protein and control of the diamondback moth (DBM), Plutella xylostella L., in inducer-treated and untreated tissues of a broccoli line transformed with a PR-1a/cry1Ab expression cassette. Spraying leaves of these plants with the inducer acibenzolar-S-methyl (= 1,2,3 benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester) (ASM) triggered expression of the cry1Ab gene and produced a high level of Cry1Ab protein within 2–3 days. Cry1Ab protein persisted in leaves for at least 8 weeks, providing prolonged protection from P. xylostella attack. Signals generated in inducer-treated leaves were transferred to untreated newly emerged leaves or heads, as seen by production of Cry1Ab protein and/or protection from insect damage in these plant parts. Signal transduction proceeded in an attenuated manner up to the sixth newly emerged leaf. No Cry1Ab protein was detectable by ELISA in uninduced young leaves, but small amounts of the protein were present in uninduced leaves older than 3 weeks and caused some insect mortality. Such basal expression of Bt genes without induction may favor the evolution of resistant insect populations and therefore limits the application of the PR-1a/cry1Ab system for insect management. However, the rapid production and steady maintenance of a high level of transgenic protein upon induction, the signal transduction observed, and the fact that the chemical inducer can be used in field conditions make the PR-1a promoter attractive for chemical regulation of other agriculturally or pharmaceutically important genes for which low expression in the absence of induction is not a concern.  相似文献   

17.
利用电脉冲将cry1C基因转子苏云金孢杆菌野生菌株YBT1535,筛选得到3个转化子。质粒电泳、PCR扩增及Southern杂交结果均证明,基因cry1C已转入菌株YBT1535。生物测定结果表明,3个转化子对甜菜夜蛾的毒力比出发菌YBT1535均有显著的提高,转化子YBT1535-1和YBT1535-3对小菜蛾和棉铃虫的生物活性与出发菌YBT1535相近,而转子化子YBT1535-2则有一定幅度  相似文献   

18.
The use of genetically modified crops expressing Bacillus thuringiensis (Bt) toxins can lead to the reduction in application of broad-spectrum pesticides and an increased opportunity for supplementary biological control. Bt microbial sprays are also used by organic growers or as part of integrated pest management programs that rely on the use of natural enemies. In both applications the evolution of resistance to Bt toxins is a potential problem. Natural enemies (pathogens or insects) acting in combination with toxins can accelerate or decelerate the evolution of resistance to Bt. In the present study we investigated whether the use of a nucleopolyhedrovirus (AcMNPV) could potentially affect the evolution of resistance to the Bt toxin Cry1Ac in Plutella xylostella. At low toxin doses there was evidence for antagonistic interactions between AcMNPV and Cry1Ac resistant and susceptible insects. However, this antagonism was much stronger and more widespread for susceptible larvae; interactions were generally not distinguishable from additive for resistant larvae. Selection for resistance to Cry1Ac in two populations of P. xylostella with differing resistance mechanisms did not produce any correlated changes in resistance to AcMNPV. Stronger antagonistic interactions between Bt and AcMNPV on susceptible rather than resistant larvae can decrease the relative fitness between Bt-resistant and susceptible larvae. These interactions and the lack of cross-resistance between virus and toxin suggest that the use of NPV is compatible with resistance management to Bt products.  相似文献   

19.
A genetically altered variant of Cry9Ca from Bacillus thuringiensis shows high potency against the spruce budworm, Choristoneura fumiferana Clemens. Its activity, as measured by feeding inhibition in frass-failure assays, is estimated to be four to seven times greater than B. thuringiensis subsp. kurstaki HD-1, the strain currently used in commercial products to control this insect. Bioassays against budworm of mixtures of the modified Cry9Ca and two of the Cry1A endotoxin proteins produced by HD-1 show neither synergism nor antagonism. Experiments with brush border membrane vesicles from budworm midgut revealed that Cry9Ca and the Cry1A toxins share a common binding site and that bound Cry9Ca can be displaced from the membrane to some extent by the Cry1A toxins. However, it is uncertain whether the binding site is actually the receptor molecule or a membrane protein associated with pore formation.  相似文献   

20.
Vegetable Indian mustard (Brassica juncea cv. “Green Wave”) plants that control Plutella xylostella (diamondback moth) (DBM) were produced by introduction of one or two Bacillus thuringiensis (Bt) genes. A cry1Ac Bt gene associated with the nptII gene for kanamycin selection or a cry1C Bt gene with the hpt gene for hygromycin selection was introduced individually through Agrobacterium-mediated transformation of seedling explants. A cry1C line was then transformed with the cry1Ac gene to produce pyramided cry1Ac + cry1C plants. Sixteen cry1C, five cry1Ac, and six cry1Ac + cry1C plants were produced. PCR and Southern analyses confirmed the presence of the cry1C, cry1Ac or pyramided cry1Ac + cry1C genes in the Indian mustard genome. ELISA analysis showed that production of Bt proteins varied greatly among individual transgenic plants, ranging from undetectable to over 1,000 ng Bt/mg total soluble protein. The levels of the Bt proteins were correlated with the effectiveness of control of diamondback moth (DBM) larvae. Insect bioassays indicated that both the cry1C and cry1Ac plants were toxic to susceptible DBM. The cry1C plants also controlled Cry1A-resistant DBM while cry1Ac plants controlled Cry1C-resistant DBM, and the pyramided cry1Ac + cry1C plants effectively controlled all three types of DBM. These Bt-transgenic plants could be used either for direct control of DBM and other lepidopteran insect pests or for tests of “dead-end” trap crops as protection of high value non-transgenic crucifer vegetables such as cabbage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号