首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Neurospora crassa, the starvation of tryptophan mutants for tryptophan resulted in the derepression of tryptophan, histidine, and arginine biosynthetic enzymes. This tryptophan-mediated derepression of histidine and arginine biosynthetic enzymes occurred despite the fact that the tryptophan-starved cells had a higher intracellular concentration of histidine and arginine than did nonstarved cells.  相似文献   

2.
Regulation of Tryptophan Biosynthetic Enzymes in Neurospora crassa   总被引:3,自引:4,他引:3       下载免费PDF全文
The formation of enzymatic activities involved in the biosynthesis of tryptophan in Neurospora crassa was examined under various conditions in several strains. With growth-limiting tryptophan, the formation of four enzymatic activities, anthranilic acid synthetase (AAS), anthranilate-5-phosphoribosylpyrophosphate phosphoribosyl transferase (PRAT), indoleglycerol phosphate synthetase (InGPS), and tryptophan synthetase (TS) did not occur coordinately. AAS and TS activities began to increase immediately, whereas PRAT and InGPS activities began to increase only after 6 to 12 hr of incubation. In the presence of amitrole (3-amino-1,2,4-triazole), the formation of TS activity in a wild-type strain was more greatly enhanced than were AAS and InGPS activities. With a tr-3 mutant, which ordinarily exhibits an elevated TS activity, amitrole did not produce an increase in TS activity greater than that observed on limiting tryptophan. With tr-3 mutants, the increased levels of TS activity could be correlated with the accumulation of indoleglycerol in the medium; prior genetic blocks which prevented or reduced the synthesis of indoleglycerol also reduced the formation of TS activity. The addition of indoleglycerol to cultures of a double mutant (tr-1, tr-3) which could not synthesize indoleglycerol markedly stimulated the production of TS activity but not PRAT activity; the production of TS activity reached the same level with limiting or with excess tryptophan. A model explaining these and other related observations on enzyme formation in N. crassa is proposed.  相似文献   

3.
In Neurospora crassa, histidine starvation of histidine mutants resulted in derepression of histidine, tryptophan, and arginine biosynthetic enzymes. The same tripartite derepression occurred in wild-type strain 74A when it was grown in medium supplemented with 3-amino-1,2,4-triazole, an inhibitor of histidine biosynthesis. Histidine-mediated derepression of tryptophan and arginine biosynthetic enzymes was not due to a lowered intracellular concentration of tryptophan or arginine, respectively. A discussion of possible mechanisms and of similar studies in prokaryotic and eukaryotic organisms is presented.  相似文献   

4.
The regulation of the tryptophan-nicotinic acid pathway in Neurospora crassa was examined with mutants (nic-2, nic-3) which require nicotinamide for growth. The accumulation of N-acetylkynurenin and 3-hydroxyanthranilic acid by these mutants served to estimate the level of function of the early reactions in the pathway. In still cultures, maximal accumulation occurred with media containing growth-limiting amounts of nicotinamide; the accumulation of intermediates was almost negligible with nicotinamide in excess. Only nicotinamide and closely related compounds which also supported the growth of these mutants inhibited the accumulation of intermediates. The site of inhibition was assessed to be between tryptophan and kynurenin (or N-acetylkynurenin). The synthesis of N-acetylkynurenin was examined in washed germinated conidia suspended in buffer; the level of N-acetylkynurenin-synthesizing activity was inversely related to the concentration of nicotinamide in the germination medium. The addition of large amounts of nicotinamide to suspensions of germinated conidia did not affect their N-acetylkynurenin-synthesizing activity. Formamidase activity, kynurenin-acetylating activity, and gross tryptophan metabolism in germinated conidia was not influenced by the concentration of nicotinamide in the germination medium. The results obtained indicate that the site of inhibition by nicotinamide is the first step in the pathway, the tryptophan pyrrolase reaction. The data are interpreted as nicotinamide or a product thereof, such as nicotinamide adenine dinucleotide, acting as a repressor of the formation of tryptophan pyrrolase in N. crassa.  相似文献   

5.
The conversion of isopentenyl pyrophosphate to phytoene in Neurospora crassa requires both a soluble and a particulate fraction. Soluble and particulate enzyme fractions obtained from light-treated and dark-grown wild type, albino-1, albino-2, albino-3, and white collar-1 strains were mixed in various combinations, and the activity for conversion of [1-14C]isopentenyl pyrophosphate to phytoene was assayed. From such experiments it can be concluded that: (a) albino-3 is defective in the soluble fraction; (b) albino-2 is defective in the particulate fraction; (c) the in vivo light treatment increases the enzyme activity in the particulate fraction; (d) this light effect occurs in wild type, albino-1, and albino-3 strains; and (e) enzyme activity is present in the particulate fraction obtained from the white collar-1 mutant, but the in vivo light treatment does not cause an increase in this activity. To measure directly the level of particulate enzyme activity, [14C]geranylgeranyl pyrophosphate was used as a substrate. This compound, which is not available commercially, was synthesized enzymically using extracts of pea cotyledons. Particulate enzyme fractions obtained from wild type, albino-1, and albino-3 strains incorporate [14C]geranylgeranyl pyrophosphate into phytoene, and this activity is higher in extracts obtained from light-treated cultures. The particulate fraction obtained from the white collar-1 mutant also incorporates [14C]geranylgeranyl pyrophosphate into phytoene, but the in vivo light treatment does not cause an increase in this activity. No incorporation occurs when particulate fractions obtained from either dark-grown or light-treated albino-2 cultures are assayed. The soluble enzyme fraction obtained from the albino-3 mutant was shown to be almost totally defective in enzyme activity required for the biosynthesis of [14C]geranylgeranyl pyrophosphate from [1-14C]isopentenyl pyrophosphate. An in vivo light treatment increases the level of this activity in wild type, albino-1, albino-2, and albino-3 strains, but not in the white collar-1 mutant. A model is presented to account for all of the results obtained in this investigation. It is proposed that the white collar-1 strain is a regulatory mutant blocked in the light induction process, whereas the albino-1, albino-2, and albino-3 strains are each defective for a different enzyme in the carotenoid biosynthetic pathway.  相似文献   

6.
Transport of arginine into mitochondria of Neurospora crassa has been studied. Arginine transport was found to be saturable (Km = 6.5 mM) and to have a pH optimum of pH 7.5. Mitochondrial arginine transport appeared to be facilitated transport rather than active transport because: (i) the arginine concentration within the mitochondrial matrix after transport was similar to that of the reaction medium, and (ii) uncouplers and substrates of oxidative phosphorylation did not affect the transport rate. The basic amino acids ornithine, lysine, and D-arginine inhibited arginine transport. The arginine transport system could be irreversibly blocked by treating mitochondria with the reactive arginine derivative, N-nitrobenzyloxycarbonyl-arginyl diazomethane.  相似文献   

7.
8.
The formation of the five tryptophan biosynthetic enzymes of Neurospora crassa was shown to be derepressed in histidine-starved cells. This histidine-mediated derepression was not due to a lowered intracellular concentration of tryptophan in these cells. Furthermore, histidine-mediated derepression of tryptophan enzymes was found to be coordinate and not subject to reversal by tryptophan of either exogenous or biosynthetic origin. The synthesis of tryptophan enzymes also was found to be coordinate in cells which were not histidine-starved. Although histidine is clearly involved in regulating the synthesis of tryptophan enzymes, it did not prevent either tryptophan-mediated derepression of tryptophan enzymes or indole-3-glycerol phosphate-mediated derepression of tryptophan synthetase.  相似文献   

9.
Use of External, Biosynthetic, and Organellar Arginine by Neurospora   总被引:6,自引:18,他引:6       下载免费PDF全文
The fate of very low amounts of (14)C-arginine derived from the medium or from biosynthesis was studied in Neurospora cells grown in minimal medium. In both cases, the label enters the cytoplasm, where it is very briefly used with high efficiency for protein synthesis without mixing with the bulk of the large, endogenous pool of (12)C-arginine. The soluble (14)C-arginine which is not used for protein synthesis is sequestered in a vesicle with the bulk of the endogenous arginine pool. After this time, it is selectively excluded from use in protein synthesis except by exchange with cytoplasmic arginine. The data suggest that in vivo, the non-organellar cytoplasm contains less than 5% of the soluble, cellular arginine. The cellular organization of Neurospora described here also prevents the catabolism of arginine. Our results are discussed in relation to previous work on amino acid pools of other eukaryotic systems.  相似文献   

10.
原核生物的精氨酸生物合成包含8个酶系,起始于乙酰谷氨酸激酶催化的谷氨酸的乙酰化。到第五步乙酰基团脱离,乙酰谷氨酸通过3个酶的作用,进一步合成乙酰化中间产物。鸟氨酸被氨甲酰基化生成瓜氨酸,天冬氨酸介入后形成精氨琥珀酸,最后形成终产物精氨酸。主要就精氨酸生物合成途径、合成过程中主要酶系及反馈抑制蛋白的作用机制进行了概述。此外,提出了目前精氨酸代谢研究中存在的问题及未来的研究方向。  相似文献   

11.
Subunit 9 of mitochondrial ATPase (Su9) is synthesized in reticulocyte lysates programmed with Neurospora poly A-RNA, and in a Neurospora cell free system as a precursor with a higher apparent molecular weight than the mature protein (Mr 16,400 vs. 10,500). The RNA which directs the synthesis of Su9 precursor is associated with free polysomes. The precursor occurs as a high molecular weight aggregate in the postribosomal supernatant of reticulocyte lysates. Transfer in vitro of the precursor into isolated mitochondria is demonstrated. This process includes the correct proteolytic cleavage of the precursor to the mature form. After transfer, the protein acquires the following properties of the assembled subunit: it is resistant to added protease, it is soluble in chloroform/methanol, and it can be immunoprecipitated with antibodies to F1-ATPase. The precursor to Su9 is also detected in intact cells after pulse labeling. Processing in vivo takes place posttranslationally. It is inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). A hypothetical mechanism is discussed for the intracellular transfer of Su9. It entails synthesis on free polysomes, release of the precursor into the cytosol, recognition by a receptor on the mitochondrial surface, and transfer into the inner mitochondrial membrane, which is accompanied by proteolytic cleavage and which depends on an electrical potential across the inner mitochondrial membrane.  相似文献   

12.
Regulation of sugar transport in Neurospora crassa   总被引:2,自引:11,他引:2       下载免费PDF全文
Sugar uptake systems in Neurospora crassa are catabolically repressed by glucose. Synthesis of a low K(m) glucose uptake system (system II) in Neurospora is derepressed during starvation for an externally supplied source of carbon and energy. Fasting also results in the derepression of uptake systems for fructose, galactose, and lactose. In contrast to the repression observed when cells were grown on glucose, sucrose, or fructose, system II was not repressed by growth on tryptone and casein hydrolysate. System II was inactivated in the presence of 0.1 m glucose and glucose plus cycloheximide but not by cycloheximide alone. Inactivation followed first-order kinetics with a half-time of 40 min. The addition of glycerol to the uptake medium had no significant effect on the kinetics of 3-0-methyl glucose uptake, suggesting that the system was not feedback inhibitable by catabolites of glycerol metabolism.  相似文献   

13.
The accumulation of imidazoleglycerol phosphate during growth of Neurospora crassa in the presence of 3-amino-1,2,4-triazole was found to cause derepression of tryptophan synthetase and to inhibit the induction of kynureninase. Accumulation of indoleglycerol phosphate in response to growth in the presence of indole acrylic acid or anthranilic acid was also accompanied by derepressed synthesis of tryptophan synthetase. Enzyme synthesis in mutants (his-7 and trp-4) unable to form these intermediates was not altered under similar conditions. The rate of formation of tryptophan synthetase and kynureninase was found to differ in the presence of tryptophan and indole.  相似文献   

14.
《Experimental mycology》1995,19(4):314-319
Davis, R. H., and Ristow, J. L. 1995. Osmotic effects on the polyamine pathway of Neurospora crassa. Experimental Mycology 19, 314-319. In bacteria, mammals, and certain plants, the induction of the polyamine synthetic enzyme, ornithine decarboxylase (ODC), and the accumulation of its product, putrescine, follows osmotic manipulations of cells. In at least some of these cases, this response is indispensable for survival. We wished to determine whether the polyamine pathway of Neurospora crassa was regulated in response to hyper- or hypoosmotic conditions. Unlike ODC of most other classes of organisms, the N. crassa enzyme and the accumulation of putrescine appears to be relatively indifferent to these conditions, either during sudden transitions or in steady-state. We conclude that other mechanisms of osmotic adjustment or tolerance have evolved in N. crassa and perhaps other fungi that obviate the need for putrescine accumulation.  相似文献   

15.
Hypoxanthine uptake and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8) were determined in germinated conidia from the adenine auxotrophic strains ad-1 and ad-8 and the double mutant strain ad-1 ad-8. The mutant strain ad-1 appears to lack aminoimidazolecarboximide ribonucleotide formyltransferase (EC 2.1.2.3) or inosine 5'monophosphate cyclohydrolase (EC 3.5.1.10) activities, or both, whereas the ad-8 strain lacks adenylosuccinate synthase activity (EC 6.3.4.4). Normal (or wild-type) hypoxanthine transport capacity was found to the ad-1 conidia, whereas the ad-8 strains failed to take up any hypoxanthine. The double mutant strains showed intermediate transport capacities. Similar results were obtained for hypoxanthine phosphoribosyl-transferase activity assayed in germinated conidia. The ad-1 strain showed greatest activity, the ad-8 strain showed the least activity, and the double mutant strain showed intermediate activity levels. Ion-exchange chromatography of the growth media revealed that in the presence of NH+/4, the ad-8 strain excreted hypoxanthine or inosine, the ad-1 strain did not excrete any purines, and the ad-1 ad-8 double mutant strain excreted uric acid. In the absence of NH+/4, none of the strains excreted any detectable purine compounds.  相似文献   

16.
17.
18.
Regulation of a Sulfur-Controlled Protease in Neurospora crassa   总被引:13,自引:4,他引:9  
Wild-type Neurospora crassa produces and secretes extracellular protease(s) when grown on a medium containing a protein as its principle sulfur source. Readily available sulfur sources, such as sulfate or methionine, repress the synthesis of the proteolytic activity. Preliminary characterization of the proteolytic enzyme shows it to have a molecular weight of about 31,000, a pH optimum of 6 to 9 with casein as substrate, and esterolytic activity against acetyl-tyrosine ethyl ester with a pH optimum of 8.5. The enzyme activity is completely inhibited by diisopropylfluorophosphate, partially inhibited by ethylenediaminetetraacetate, but unaffected by iodoacetate. The proteolytic activity is temperature labile and is reduced by 75% within 15 min at 60 C. Synthesis of the protease activity is induced by proteins, and to a lesser extent by large-molecular-weight polyamino acids, but not at all by small peptides or amino acid mixtures. During conidial out-growth, the protease(s) first appears at about 8 h and continues to increase while the cells are in an active growth phase. When a low concentration of sulfate is present, the protease(s) is not produced until about 18 h, suggesting that the sulfate must first be used by the cells before the protease is either synthesized or released.  相似文献   

19.
20.
The utilization of thymidine by Neurospora crassa is initiated by the pyrimidine deoxyribonucleoside 2'-hydroxylase reaction and the consequent formation of thymine and ribose. Thymine must then be oxidatively demethylated by the thymine 7-hydroxylase and uracil-5-carboxylic acid decarboxylase reactions. This article shows that the 2'-hydroxylase reaction can be regulated differently than the oxidative demethylation process and suggests that the 2'-hydroxylase has, in addition to the role of salvaging the pyrimidine ring, the role of providing ribose not only for the utilization of the demethylated pyrimidine but also for other metabolic processes. One way that this difference in regulation was observed was with the uc-1 mutation developed by Williams and Mitchell. The present communication shows that this mutation increases the activities of the 7-hydroxylase and the decarboxylase but has no comparable effect on the 2'-hydroxylase. Qualitatively similar effects on these enzymes were bought about by growth of wild-type Neurospora in media lacking ammonium ion, such as the Westergaard-Mitchell medium. The 2'-hydroxylase and 7-hydroxylase are also differently affected by the carbon dioxide content of the atmosphere above the growing culture and the growth temperature. Studies with inhibitors indicated that the carbon dioxide effect is dependent on protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号