首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of carotenoid biosynthesis during tomato development.   总被引:22,自引:0,他引:22       下载免费PDF全文
Phytoene synthase (Psy) and phytoene desaturase (Pds) are the first dedicated enzymes of the plant carotenoid biosynthesis pathway. We report here the organ-specific and temporal expression of PDS and PSY in tomato plants. Light increases the carotenoid content of seedlings but has little effect on PDS and PSY expression. Expression of both genes is induced in seedlings of the phytoene-accumulating mutant ghost and in wild-type seedlings treated with the Pds inhibitor norflurazon. Roots, which contain the lowest levels of carotenoids in the plant, have also the lowest levels of PDS and PSY expression. In flowers, expression of both genes and carotenoid content are higher in petals and anthers than in sepals and carpels. During flower development, expression of both PDS and PSY increases more than 10-fold immediately before anthesis. During fruit development, PSY expression increases more than 20-fold, but PDS expression increases less than threefold. We concluded that PSY and PDS are differentially regulated by stress and developmental mechanisms that control carotenoid biosynthesis in leaves, flowers, and fruits. We also report that PDS maps to chromosome 3, and thus it does not correspond to the GHOST locus, which maps to chromosome 11.  相似文献   

3.
4.
In addition to the ethylene formed at the onset of tomato fruit ripening, three peaks of ethylene are produced during earlier periods of in vitro development of tomato flower to fruit. This is the first report characterizing ethylene production during early development of tomato fruit. Previous reports from this laboratory showed that VFNT Cherry tomato calyces are transformed into fruit tissue when cultured in vitro at lower temperatures (16–23 °C). Early ethylene production was also measured in these ripening calyces, as well as in fruit and calyces of other tomato cultivars cultured in vitro. Calyces from Ailsa Craig and rin tomato flowers, which are not transformed into fruit tissue at these lower temperatures, also form ethylene during early periods of in vitro culture, but to a much smaller extent. Unlike ethylene formed at the onset of fruit ripening, the earlier peaks are resistant to the inhibitors, aminovinylglycine (AVG) and CoCl2. The data suggest that ethylene produced during earlier periods of tomato fruit development is formed by an alternative biosynthetic pathway.  相似文献   

5.
6.
7.
8.
9.
10.
11.
An expansin gene, LeExp2, was isolated from auxin-treated, etiolated tomato (Lycopersicon esculentum cv T5) hypocotyls. LeExp2 mRNA expression was restricted to the growing regions of the tomato hypocotyl and was up-regulated during incubation of hypocotyl segments with auxin. The pattern of expression of LeExp2 was also studied during tomato fruit growth, a developmental process involving rapid cell enlargement. The expression of genes encoding a xyloglucan endotransglycosylase (LeEXT1) and an endo-1, 4-beta-glucanase (Cel7), which, like LeExp2, are auxin-regulated in etiolated hypocotyls (C. Catalá, J.K.C. Rose, A.B. Bennett [1997] Plant J 12: 417-426), was also studied to examine the potential for synergistic action with expansins. LeExp2 and LeEXT1 genes were coordinately regulated, with their mRNA accumulation peaking during the stages of highest growth, while Cel7 mRNA abundance increased and remained constant during later stages of fruit growth. The expression of LeExp2, LeEXT1, and Cel7 was undetectable or negligible at the onset of and during fruit ripening, which is consistent with a specific role of these genes in regulating cell wall loosening during fruit growth, not in ripening-associated cell wall disassembly.  相似文献   

12.
Polyamines have been attributed a general role in fruit development in several plants like pea and tomato. To investigate the involvement of these compounds in parthenocarpic fruit development in Citrus clementina, we have isolated three genes encoding aminopropyl transferases in this species: CcSPDS, CcSPM1 and CcACL5. The unambiguous identity of the proteins encoded by these genes was confirmed by phylogenetic analysis and by heterologous expression in yeast mutants deficient in aminopropyl transferase activity. The expression of these genes in C. clementina is not restricted to ovaries and fruits, but it is also detectable all throughout the plant. More importantly, gibberellin-induced parthenocarpic fruit set caused a decrease in CcSPDS expression in ovaries, paralleled by a decrease in spermidine; while the expression of CcSPM1 and CcACL5 was basically unaffected, resulting in the maintenance of spermine concentration during early fruit development. In addition, the variation in putrescine content was paralleled by changes in the expression of one of the two putative CcODC paralogs.  相似文献   

13.
14.
15.
Plant isoprenoids represent a heterogeneous group of compounds which play essential roles not only in growth and development, but also in the interaction of plants with their environment. Higher plants contain two pathways for the biosynthesis of isoprenoids: the mevalonate pathway, located in the cytosol/endoplasmic reticulum, and the recently discovered mevalonate-independent pathway (Rohmer pathway), located in the plastids. In order to evaluate the function of the Rohmer pathway in the regulation of the synthesis of plastidial isoprenoids, we have isolated a tomato cDNA encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), the first enzyme of the pathway. We demonstrate in vivo activity and plastid targeting of plant DXS. Expression analysis of the tomato DXS gene indicates developmental and organ-specific regulation of mRNA accumulation and a strong correlation with carotenoid synthesis during fruit development. 1-Deoxy-D-xylulose feeding experiments, together with expression analysis of DXS and PSY1 (encoding the fruit-specific isoform of phytoene synthase) in wild-type and yellow flesh mutant fruits, indicate that DXS catalyses the first potentially regulatory step in carotenoid biosynthesis during early fruit ripening. Our results change the current view that PSY1 is the only regulatory enzyme in tomato fruit carotenogenesis, and point towards a coordinated role of both DXS and PSY1 in the control of fruit carotenoid synthesis.  相似文献   

16.
17.
18.
To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA libraries were constructed from rice panicles at the stage of branching and flower primordia specification or from panicles undergoing floral organogenesis. Partial sequence analysis and expression patterns of some of these random cDNA clones from these two rice panicle libraries are presented. Sequence comparisons with known DNA sequences in databases reveal that approximately sixtyeight per cent of these expressed rice genes show varying degrees of similarity to genes in other species with assigned functions. In contrast, thirtytwo per cent represent uncharacterized genes. cDNAs reported here code for potential rice homologues of housekeeping molecules, regulators of gene expression, and signal transduction molecules. They comprise both single-copy and multicopy genes, and genes expressed differentially, both spatially and temporally, during rice plant development. New rice cDNAs requiring specific mention are those with similarity toCOP1, a regulator of photomorphogenesis inArabidopsis; sequence-specific DNA binding plant proteins like AP2-domain-containing factors; genes that specify positional information in shoot meristems like leucine-rich-repeat-containing receptor kinases; regulators of chromatin structure like Polycomb domain protein; and also proteins induced by abiotic stresses.  相似文献   

19.
Smith DL  Gross KC 《Plant physiology》2000,123(3):1173-1183
During our search for a cDNA encoding beta-galactosidase II, a beta-galactosidase/exogalactanase (EC 3.2.1.23) present during tomato (Lycopersicon esculentum Mill.) fruit ripening, a family of seven tomato beta-galactosidase (TBG) cDNAs was identified. The shared amino acid sequence identity among the seven TBG clones ranged from 33% to 79%. All contained the putative active site-containing consensus sequence pattern G-G-P-[LIVM]-x-Q-x-E-N-E-[FY] belonging to glycosyl hydrolase family 35. Six of the seven single-copy genes were mapped using restriction fragment length polymorphisms of recombinant inbred lines. RNA gel-blot analysis was used to evaluate TBG mRNA levels throughout fruit development, in different fruit tissues, and in various plant tissues. RNA gel-blot analysis was also used to reveal TBG mRNA levels in fruit of the rin, nor, and Nr tomato mutants. The TBG4-encoded protein, known to correspond to beta-galactosidase II, was expressed in yeast and exo-galactanase activity was confirmed via a quantified release of galactosyl residues from cell wall fractions containing beta(1-->4)-D-galactan purified from tomato fruit.  相似文献   

20.
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号