首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While previous studies with truncated erythropoietin receptors (EpRs) have suggested that the tyrosine phosphorylation of the EpR does not play a role in Ep-induced proliferation, we have found, using a more subtle, full length EpR mutant, designated Null, in which all eight of the intracellular tyrosines have been substituted with phenylalanine residues, that Null cells require substantially more Ep than wild-type cells in order to proliferate as efficiently. A comparison of Ep-induced proliferation with Ep-induced tyrosine phosphorylation patterns, using wild-type and Null EpR-expressing cells, revealed that Stat5 tyrosine phosphorylation and activation correlated directly with proliferation. Moreover, studies with a Y343F EpR point mutant and various EpR deletion mutants revealed that both Ep-induced proliferation and Stat5 activation were mediated primarily through Y343, but that other tyrosines within the EpR could activate Stat5 in its absence.  相似文献   

2.
The glycoprotein hormone erythropoietin (Ep) regulates the proliferation and differentiation of erythroid progenitor cells by a signal transduction system which is not well understood. It has recently been reported that prolactin, a mitogen and trophic hormone for liver, will activate a nuclear protein kinase C in hepatocytes. As similarities exist in the actions of Ep and prolactin in their target cells, we tested the hypothesis that Ep could activate protein kinase C in nuclei isolated from erythroid progenitor cells. In a pure population of such nuclei, Ep induced a rapid, time- and dose-dependent increase in phosphorylation of endogenous nuclear substrate which could be blocked by inhibitors of protein kinase C or by antibody to Ep. Other known activators of protein kinase C were also effective in this system. These findings show that Ep may exert its effects by a novel signalling pathway, the activation of a nuclear protein kinase C.  相似文献   

3.
Calmodulin regulation of adenylate cyclase activity   总被引:8,自引:0,他引:8  
Calmodulin-dependent stimulation of adenylate cyclase was initially thought to be a unique feature of neural tissues. In recent years evidence to the contrary has accumulated, calmodulin-dependent stimulation of adenylate cyclase now being demonstrated in a wide range of structurally unrelated tissues and species. Demonstration of the existence of calmodulin-dependent adenylate cyclase has in nearly all instances required the removal of endogenous calmodulin. It is not yet clear whether calmodulin-dependent and calmodulin-independent forms of the enzyme exist and whether some tissues (such as heart) lack a calmodulin-dependent adenylate cyclase. The presence of calmodulin appears largely responsible for the ability of the adenylate cyclase enzyme to be stimulated by submicromolar concentrations of calcium; it may not be relevant to the inhibition of the enzyme which occurs at higher concentrations of calcium. The physical relationship of calmodulin to the plasma membrane bound enzyme (or to the soluble forms of the enzyme) is not known nor is the mechanism of adenylate cyclase activation by calmodulin clear; current data suggest some involvement with both the N and C units of the enzyme. Finally, it is possible that in vivo calcium contributes to the duration of the hormone stimulated cyclic AMP signal. Thus current in vitro data suggest that optimal hormonal activation of calmodulin-dependent adenylate cyclase occurs at very low intracellular calcium concentrations, comparable to those found in the resting cell; conversely the enzyme is inhibited as intracellular calcium increases, following for example agonist stimulation of the cell. These higher calcium concentrations would then activate calmodulin-dependent phosphodiesterase. Such differential effects of calcium on adenylate cyclase and phosphodiesterase would ultimately restrict the duration of the hormone-induced cyclic AMP signal.  相似文献   

4.
Signal transduction events in in vitro megakaryocytopoiesis   总被引:1,自引:0,他引:1  
N T Williams 《Blood cells》1989,15(1):230-235
Understanding of the events following factor-mediated megakaryocyte development is hindered by a lack of adequate quantities of purified progenitor cells or progenitor cell lines. In order to study the intracellular processes activated during development, probes of various signal transduction systems are used to perturb megakaryocyte colony formation. Studies utilizing tumor promoting phorbol diesters and calcium ionophores show that protein kinase C and calcium mobilization (and/or influx) are activated during megakaryocyte development. Examination of the adenylate cyclase complex, with agonists such as cholera toxin etc., implicate cyclic AMP as another mediator of growth-factor responsiveness. Finally, synergistic interactions occur between the calcium-protein kinase C system and the adenylate cyclase complex. These observations corroborate the multifactorial regulation of megakaryocytopoiesis postulated by Williams and coworkers. The data further provide an intracellular mechanism(s) by which megakaryocytic growth factors regulate cellular development.  相似文献   

5.
The extracellular environment is a major factor in determining the responsiveness of a cell to particular stimuli. For example, E series prostaglandins suppress B cell responses to T-independent antigens, mitogen stimulation of DNA synthesis and proliferation, and the primary immune response. We investigated the effects of prostaglandins on the intracellular signals generated by receptor-coupled effector systems in B lymphocytes. Pretreating splenocytes from athymic nude mice with forskolin, PGE1, or PGE2 decreased the magnitude of anti-IgM-induced changes in cytosolic free [Ca2+]. Addition of 8-Br-cAMP, forskolin, PGE1, or PGE2 following stimulation with anti-IgM resulted in a decrease in the intracellular calcium signal measured by fluorescence-activated cell sorting using Indo-1 as a Ca2+ indicator. This decrease was not a result of an inhibition of influx across the plasma membrane. Thus activation of adenylate cyclase by prostaglandins modifies the generation of signals by phosphoinositidase C. This effector system cross-talk between adenylate cyclase and phosphoinositidase C is consistent with and may account for the inhibitory effects of prostaglandins in B cell responses.  相似文献   

6.
Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, differentiation, and activation of myeloid cells. It binds to a high affinity receptor (G-CSF-R) expressed on myeloid cells, for which the signal transduction mechanisms other than protein tyrosine kinase (PTK) activation have not been completely identified. We explored the potential involvement of protein kinase-C (PKC) in G-CSF-R signal transduction. In this report, we provide direct evidence of PKC activation by G-CSF-R. G-CSF treatment of peripheral blood neutrophils, granulocytic cell lines (HL-60, NFS-60, KG-1), and monocytic cell lines (WEHI-3B,U-937) resulted in PKC activation. Chelerythrine chloride and HA-100, an isoquinolinesulfonamide derivative, the specific inhibitors of PKC, 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA), a chelator of intracellular calcium, and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester (TMB-8), an inhibitor of intracellular calcium release, blocked G-CSF-induced PKC activation in HL-60 cells, and reduced CD11b upregulation in neutrophils, but did not affect ligand-binding or down-modulation of G-CSF-R. Methyl 2,5-dihydroxycinnamate (MDHC), a potent inhibitor of protein tyrosine kinases (PTK), also inhibited PKC activation in response to G-CSF treatment, suggesting that PKC activation may occur downstream of PTK activation. Our results demonstrate the involvement of PKC in G-CSF-R signal transduction, and suggest a common signaling pathway in myeloid cells of granulocytic and monocytic lineages. J. Cell. Biochem. 66:286–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Olfactory transduction: cross-talk between second-messenger systems   总被引:6,自引:0,他引:6  
R R Anholt  A M Rivers 《Biochemistry》1990,29(17):4049-4054
Chemosensory cilia of olfactory receptor neurons contain an adenylate cyclase which is stimulated by high concentrations of odorants. Cyclic AMP produced by this enzyme has been proposed to act as second messenger in olfactory transduction. Here we report that olfactory cilia contain calmodulin and that calmodulin potently activates olfactory adenylate cyclase by a mechanism additive to and independent from direct stimulation by odorants. Activation by calmodulin is calcium dependent and enhanced by GTP. Thus, olfactory transduction may involve a second-messenger cascade in which an odorant-induced increase in intracellular calcium concentration leads to activation of adenylate cyclase by calmodulin.  相似文献   

8.
Signals transduced through the B cell Ag receptor (BCR) drive B cell development. However, BCR-induced responses are developmentally regulated; immature B cells are tolerized following antigenic exposure while mature B cells are triggered to proliferate and differentiate. This differential responsiveness allows for the negative selection of self-reactive immature B cells while simultaneously allowing for clonal expansion of mature B cells in response to foreign Ags. Intrinsic differences in BCR-induced signal transduction at various stages of development may account for this functional dichotomy. We had previously demonstrated that the BCR-induced proliferation of mature B cells is accompanied by an increase in intracellular calcium levels and polyphosphoinositide bis phosphate (PIP2) hydrolysis. In contrast, immature B cells that undergo BCR-induced apoptosis increase intracellular calcium in the relative absence of PIP2 hydrolysis. Since PIP2 hydrolysis leads to the generation of diacylglycerol, a cofactor for protein kinase C (PKC) activation, these data suggested that an "imbalance" in BCR-induced signal transduction resulting from a relative inability to activate PKC may play a role in the susceptibility of immature B cells to BCR-induced apoptosis. In support of this hypothesis, we demonstrate that PKC activation can rescue immature B cells from BCR-induced apoptosis. Furthermore, the susceptibility of immature B cells to BCR-induced apoptosis is recapitulated in mature B cells that are either PKC depleted or are stimulated in the presence of PKC inhibitors, suggesting that an uncoupling of PKC activation from BCR-induced signaling is responsible for the apoptotic response of immature B cells.  相似文献   

9.
Activation of T lymphocytes is initiated by receptor ligand interactions at the cell surface leading to the transduction of intracellular signals followed by the de novo synthesis and expression of T cell activation markers (including receptors for interleukin 2 (IL 2) and transferrin), production of lymphokines, and T cell proliferation. This requisite first step for activation of T lymphocytes can be mimicked in certain situations with a variety of stimuli. These include antibodies to certain integral membrane proteins, phorbol esters, and plant lectins that act as mitogens. In this paper, we report that at least two classes of human T cell clones can be distinguished based upon signal requirements necessary to induce proliferation. Although all clones analyzed expressed IL 2 receptors and secreted IL 2 after non-antigenic activation, one subset of clones did not proliferate in response to the same non-antigenic signals. In that subset, complete activation leading to proliferation required interaction of the T cell with specific antigen. The ability to subset these T cell clones into two groups did not correlate with phenotypic differences, source of the clone, nor with magnitude of intracellular calcium mobilization. By studying the stimulation requirements of these two subsets of human T cell clones through the use of specific antigen or antigen-independent stimuli, it was possible to demonstrate that different stimuli varied in their ability to induce steps of T cell activation. Analysis of reactivity of these clones to suboptimal stimulation allowed the definition of intermediate stages of T cell activation. Such intermediate stages might reflect a diversity of intracellular signaling pathways or a complexity of regulatory mechanisms distal to the events that allow intracellular calcium mobilization. Thus for the first time, it has been possible to study ordered events of T cell activation in non-transformed, antigen-dependent human T lymphocytes. The data presented in this paper suggest that T cell activation is not an all or nothing phenomenon, and there is an ordered sequence of events that can be differentiated based upon signal requirements at the T cell membrane.  相似文献   

10.
When L3T4+ cloned murine helper T lymphocytes (HTL) are stimulated with antigen or immobilized anti-T cell receptor (TCR) monoclonal antibodies (mAb) at concentrations which are optimal for proliferation, anti-L3T4 mAb inhibits activation as measured by proliferation and lymphokine production. Under similar conditions, IL 2-independent proliferation of Lyt-2+ cloned murine cytolytic T lymphocytes (CTL) stimulated by anti-TCR mAb is inhibited by anti-Lyt-2 antibodies. Proliferation of cloned HTL and CTL cells stimulated by IL 2 is not affected by the anti-L3T4 and anti-Lyt-2 mAb. The inhibition of TCR-induced activation of the T cell clones is not due to interference with the binding of the anti-TCR mAb. Stimulation of the TCR has been proposed to induce lymphokine secretion and proliferation by T cells through a pathway involving the activation of protein kinase C and the stimulation of an increase in the concentration of intracellular free calcium. However, proliferation of T cells stimulated by PMA (which activates protein kinase C) plus the calcium ionophore A23187 (which increases the concentration of intracellular free calcium) is not affected by mAb reactive with the Lyt-2 or L3T4 structures. If TCR stimulation does indeed activate T cells by activating protein kinase and increasing intracellular free calcium, then our data suggest that anti-L3T4 and anti-Lyt-2 mAb inhibit TCR-driven proliferation at some step before the activation of protein kinase C and the stimulation of a rise in intracellular free calcium concentration. Our results suggest that anti-L3T4 and anti-Lyt-2 mAb interfere with early biochemical processes induced by stimulation of the TCR. In HTL, which proliferate via an autocrine pathway, anti-L3T4 mAb appears to inhibit proliferation by interfering with signaling events involved in lymphokine production. Inhibition of IL 2-independent proliferation of Lyt-2+ cells by anti-Lyt-2 mAb appears to occur by a different mechanism. The precise molecular basis for the interference of each cell type has not yet been characterized.  相似文献   

11.
The activation of resting B cells with anti-surface Ig is associated with transient increases in intracellular calcium. In the present study, we demonstrate that stimulation of B cells which have already been activated by Staphylococcus aureus Cowan I (Sac), with high molecular weight B cell growth factor (HMW-BCGF) or low molecular weight B cell growth factor (LMW-BCGF), but not IL-2, IL-4, or interferon-gamma, is associated with an increase in intracellular calcium, which is modest compared to that seen with anti-Ig (approximately 100 nM vs approximately 400 nM). The increases in intracellular calcium induced by HMW-BCGF or LMW-BCGF occur in distinct but overlapping subpopulations of B cells. Thus, increases in intracellular calcium in human B cells occur not only upon activation but also upon the induction of proliferation by certain (but not all) B cell growth factors. Presumably, the effect of increasing intracellular calcium during the induction of proliferation is to modify a different group of intracellular molecules than those induced during activation.  相似文献   

12.
Frye CA  Walf AA 《Steroids》2008,73(9-10):906-913
In the ventral tegmental area (VTA), progestins facilitate lordosis via rapid actions at membrane dopamine Type 1-like (D(1)) and/or GABA(A) receptors (GBRs), rather than via cognate, intracellular progestin receptors (PRs). Downstream signal transduction pathways involved in these effects were investigated using lordosis as a bioassay. If progestins' actions at D(1) and/or GBRs in the VTA require activation of G-proteins, adenylyl cyclase, cyclic AMP-dependent protein kinase A (PKA), phospholipase C (PLC), and/or PKC, then pharmacologically blocking these pathways would be expected to attenuate progestin-facilitated lordosis and its enhancement by D(1) and GBR activity. Ovariectomized, estradiol-primed rats were infused first with vehicle or signal transduction inhibitor, and second with vehicle, a D(1) or GBR agonist, and then with vehicle or progestins to the VTA. Rats were tested for lordosis following infusions. Results indicated that initiation of G-proteins, adenylyl cyclase, PKA, PLC, or PKC in the VTA is required for rapid effects of progestins through D(1) and/or GBRs to facilitate lordosis. As well, progestins' actions at n-methyl-d-aspartate receptors (NMDARs) may modulate activity at D(1) and/or GBRs and mitogen activated protein kinase (MAPK) may be a common signaling pathway. Findings from a microarray study demonstrated that there was upregulation of genes associated with steroid metabolism, GBRs, D(1), NMDARs and signal transduction factors in the midbrain VTA of naturally receptive mated compared to non-mated rats. Thus, in the VTA, progestins have rapid membrane-mediated actions via D(1), GBRs, NMDARs and their downstream signal transduction pathways.  相似文献   

13.
Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca(2+)) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca(2+) homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca(2+) traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies.  相似文献   

14.
1. The darkening actions of MCH (melanin concentrating hormone), alpha-MSH and the synthetic analog [Nle4, D-Phe7]-alpha-MSH on the toad, Bufo ictericus ictericus, melanophores were studied regarding the role of calcium in the hormone receptor coupling, signal transduction and intracellular pigment translocation. 2. In the absence of external calcium, MCH and both melanotropins still elicit maximal skin darkening. 3. Verapamil, a calcium-channel blocker, completely abolishes the alpha-MSH-induced response and partially inhibits MCH-induced darkening, although the calcium carrier, ionophore A23187, was unable to promote any pigment translocation. 4. Since darkening responses promoted by cyclic nucleotides proceeded normally in the presence of verapamil and extracellular calcium was not necessary for melanotropin dispersing action, it is suggested that the blocking activity obtained with verapamil is probably due to an impairment of the Ca2+-dependent adenylate cyclase activity. 5. Reversal of melanotropin-induced darkening could be obtained with melatonin, in both normal and Ca2+-free Ringer, whereas MCH darkening is reversed by melatonin only in the absence of calcium. 6. The results seem to indicate that calcium is not required for hormone receptor binding and pigment migration, whereas it is specifically needed for signal transduction.  相似文献   

15.
Current models for lectin-induced T cell proliferation suggest that activation of protein kinase C (PK-C) and elevation of cytoplasmic Ca2+ may both play important roles in the earliest phases of signal transduction. To learn more about the relative inability of T cells from old mice to proliferate in response to mitogenic stimuli, we attempted to stimulate T cells by the synergistic effects of a PK-C activator, phorbol myristate acetate (PMA), and the calcium ionophore ionomycin. T cells from young mice respond as well to optimal combinations of these agents as they do to the strong polyclonal activator Con A, but T cells from old mice respond much better to PMA plus ionomycin than they do to Con A. This result suggests that an inability to transduce the signal supplied by extracellular ligands into the intracellular signals represented by Ca2+ and PK-C activators may underlie the age-associated loss of T cell reactivity. We also found evidence for a second defect in old T cells related to their response to elevated intracellular Ca2+: old T cells, compared with young, required higher levels of ionomycin for maximal proliferation.  相似文献   

16.
This study examines the regulation of cGMP by illumination and by calcium during signal transduction in vertebrate retinal photoreceptor cells. We employed an electropermeabilized rod outer segment (EP-ROS) preparation which permits perfusion of low molecular weight compounds into the cytosol while retaining many of the features of physiologically competent, intact rod outer segments (ROS). When nucleotide-depleted EP-ROS were incubated with MgGTP, time- and dose- dependent increases in intracellular cGMP levels were observed. The steady state cGMP concentration in EP-ROS (0.007 mol cGMP per mol rhodopsin) approached the cGMP concentration in intact ROS. Flash illumination of EP-ROS in a 250-nM free calcium medium resulted in a transient decrease in cGMP levels; this occurred in the absence of changes in calcium concentration. The kinetics of the cGMP response to flash illumination of EP-ROS were similar to that of intact ROS. To further examine the effects of calcium on cGMP metabolism, dark-adapted EP-ROS were incubated with MgGTP containing various concentrations of calcium. We observed a twofold increase in cGMP steady state levels as the free calcium was lowered from 1 microM to 20 nM; this increase was comparable to the behavior of intact ROS. Measurements of guanylate cyclase activity in EP-ROS showed a 3.5-fold increase in activity over this range of calcium concentrations, indicating a retention of calcium regulation of guanylate cyclase in EP-ROS preparations. Flash illumination of EP-ROS in either a 50- or 250-nM free calcium medium revealed a slowing of the recovery time course at the lower calcium concentration. This observation conflicts with any hypothesis whereby a reduction in free calcium concentration hastens the recovery of cytoplasmic cGMP levels, either by stimulating guanylate cyclase activity or by inhibiting phosphodiesterase activity. We conclude that changes in the intracellular calcium concentration during visual transduction may have more complex effects on the recovery of the photoresponse than can be accounted for solely by guanylate cyclase activation.  相似文献   

17.
Resting T lymphocytes proliferate in response to a combination of a calcium ionophore and a phorbol ester. This observation suggests that an increase in intracellular calcium free ion concentration [Ca2+]i and activation of protein kinase C (PKC) are sufficient signaling events for the initiation of T cell proliferation. In contrast, an accessory cell-generated costimulatory signal, acting independently of the rise in [Ca2+]i and PKC activation, is required for Ag-induced proliferation of type I T cell clones. We now report that this costimulatory signal is unexpectedly also being delivered via a cell-cell interaction during the response to ionomycin and phorbol ester. In the absence of this signal (at limiting cell numbers), T cells fail to divide. We also demonstrate that proliferation in response to immobilized anti-CD3 mAb requires the cell-cell interaction. These results suggest a model of T cell stimulation in which activation of a costimulatory signaling pathway is important in the regulation of the IL-2 gene, and only in the presence of this (third) signal can an increase in [Ca2+]i and PKC activity induce T cell proliferation. Such a model predicts that IL-2-dependent expansion of T cell clones in vivo in response to Ag receptor occupancy requires the delivery of an independent accessory cell-derived co-stimulatory signal.  相似文献   

18.
In experiments on isolated olfactory epithelium, cAMP was shown to have an intracellular signal system which participates in pentanol olfaction transduction. Increase in the intracellular cAMP level is associated with adenylate cyclase activation due to G-protein stimulation by odorant coupled with it.  相似文献   

19.
The sequential actions of phosphoinositide 4-kinase and 5-kinase and hydrolysis of phosphatidylinositol (PtdIns) 4,5-P2 are stimulated during platelet activation. Recently, a phosphoinositide 3-kinase has been implicated in signal transduction in several cell types. Stimulation of PtdIns(3,4)P2 synthesis has been shown in polyoma middle T-transformed and platelet-derived growth factor-stimulated cells, and this novel lipid has been implicated in signal transduction and regulation of cell proliferation. We demonstrate the formation of PtdIns(3,4)P2 in human platelets and show that the synthesis of this lipid (and of PtdIns(4,5)P2) is stimulated during activation of platelets by thrombin. This indicates the presence of phosphoinositide 3-kinase activity in platelets. We postulate that PtdIns(3,4)P2 is involved in signal transduction in platelets and discuss the possibility that this novel lipid is a substrate for phospholipase C.  相似文献   

20.
Rebamipide, an antiulcer agent, has been shown to be able to prevent gastric mucosal injury resulting in part from activation of neutrophils. The mechanism of its suppressive action, however, remains to be established. The present study aimed to determine the effect of rebamipide on activation of isolated human neutrophils and to identify the signal transduction pathway involved in its regulation. In unstimulated cells, alkaline phosphatase activity was found residing in short rod-shaped intracellular granules. Upon stimulation with a chemotactic peptide formyl-methionyl-leucyl-phenylalanine, the granules fused to form elongated tubular structures and spherical vacuoles. Rebamipide inhibited reorganization of alkaline phosphatase-containing granules along with upregulation of alkaline phosphatase activity and CD16, a marker of the granules. It also suppressed chemotaxis, an increase in intracellular calcium ion concentration, and NADPH oxidase activation in cells stimulated with formyl-methionyl-leucyl-phenylalanine. In contrast, the drug showed no inhibitory action toward upregulation of alkaline phosphatase activity and CD16, and activation of NADPH oxidase in cells stimulated with phorbol myristate acetate, an activator of protein kinase C. These findings demonstrate that rebamipide exerts a broad spectrum of suppressive actions toward biological functions of human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine, but not with phorbol myristate acetate, and suggest that the upstream point of protein kinase C is the signal transduction pathway involved in its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号