首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Oligodeoxyribonucleotide phosphorothioates undergo desulfurization in presence of metal in aqueous ammonia at elevated temperatures. The extent of sulfur loss and chain cleavage have been investigated.  相似文献   

2.
Specific-primer-directed DNA sequencing   总被引:70,自引:0,他引:70  
A simple and rapid strategy for DNA sequence analysis based on the Sanger chain-termination method is described. This procedure utilizes full-sized inserts of 1 to 4 kb of DNA cloned into M13 bacteriophage vectors. After the sequence of the first 600-650 bp of the insert DNA has been determined with the commercially available universal vector primer, a specific oligonucleotide is synthesized utilizing the sequence data obtained from the 3' end of the sequence and used as a primer to extend the sequence analysis for another 600-650 nucleotides. Additional primers are synthesized in a similar manner until the nucleotide sequence of the entire insert DNA has been determined. General guidelines for the selection of oligonucleotide length and composition and the use of unpurified primers are discussed. The use of the specific-primer-directed approach to dideoxynucleotide sequence analysis, in association with highly purified single-stranded template DNA, reduces considerably the time required for the analysis of large segments of DNA.  相似文献   

3.
A method for the analysis and characterization of therapeutic and diagnostic oligonucleotides has been developed using a combination of liquid chromatography and mass spectrometry (LC-MS). The optimized ion-pairing buffers permit a highly efficient separation of native and chemically modified antisense oligonucleotides (AS-ODNs) from their metabolites or failure synthetic products. The mobile phases were MS compatible, allowing for direct and sensitive analysis of components eluting from the column. The method was applied for the quantitation and characterization of AS-ODNs, including phosphorothioates and 2'-O-methyl-modified phosphorothioates. Tandem LC-MS analysis confirmed the identity of the oligonucleotide metabolites, failure products, the presence of protection groups not removed after synthesis, and the extent of depurination or phosphorothioate backbone oxidation.  相似文献   

4.
A simple and rapid strategy for distinguishing between positively hybridizing colonies and false positive-hybridization signals is described. The isolation of a specific DNA sequence depends on the ability to distinguish between a clone that contains the correct sequence and a false hybridization-positive or background signal. This procedure utilizes the same oligonucleotide mixture both as a screening probe and as a sequencing primer. The mixture of oligonucleotides is used as a primer to obtain sequence information directly from double-stranded DNA. Conditions for sequencing with oligonucleotides having up to 64-fold degeneracy are described. Since the sequence information obtained is directly adjacent to the site of oligonucleotide:DNA hybridization, it is necessary to know only a minimal length of DNA or peptide sequence to both design oligonucleotide probes and confirm the authenticity of the hybridization positives. The advantages of the degenerate oligonucleotide sequencing method include the rapid, reliable identification of authentic versus false hybridization positives made directly without subcloning into single-stranded M13 phage, without sequencing large regions of DNA, or without synthesizing sequence-specific primers.  相似文献   

5.
Oligodeoxynucleotide-containing phosphorothioate backbones have been used to regulate viral as well as cellular gene expression. The studies carried out in tissue culture have shown promising results on the use of oligonucleotide phosphorothioates as antiviral agents and, at present, study is underway to develop these oligonucleotide analogues as chemotherapeutic agents. To analyze and purify oligonucleotide analogues, high-performance liquid chromatography using weak anion exchange column has been described. The separation of oligonucleotide phosphorothioate is found to be length dependent.  相似文献   

6.
Abstract

Recent progress on the development of oligonucleotide phosphorothioates to meet market demands is reported.  相似文献   

7.
8.
Abstract

Antisense oligonucleotides as modulators of gene expression represent an exciting new drug technology. Oligodeoxyribonucleotide phosphorothioates are now among the most intensively investigated nuclease-resistant antisense analogs, as evidenced by a number of ongoing clinical trials against several disease targets. Structurally, these differ from natural oligonucleotides by the replacement of one of two nonbridging oxygen atoms by a sulfur atom at each internucleotide linkage. Among factors in the successful development of these complex molecules to support broad clinical trials have been advances made in automation, analysis and purification. The large scale synthesis of oligonucleotide phosphorothioates is presently carried out by initial formation of the internucleotide phosphite linkage using solid-phase phosphoramidite chemistry followed by sulfurization. Efficient synthesis of 20-mer oligophosphorothioates has been achieved on 0.15 mole scale with only 1.75-fold excess of amidite synthons. However, as the scale of synthesis increases to meet future market demands, issues related to fast and efficient synthesis, automation, scalability and product purification are also being investigated. One issue has been the protocol for final product deprotection. Since deprotection involves large quantities of saturated aqueous ammonium hydroxide, one might consider use of stainless steel reactors to withstand resulting vapor pressure at 55°C. A recent report,1 however, discusses the instability of dimer phosphorothioates in aqueous ammonia in the presence of metal ions. As this is potentially an important issue for phosphorothioate oligonucleotide synthesis, we describe herein our findings regarding deprotection of a 20-mer oligodeoxyribonucleotide phosphorothioate with aqueous ammonia during process development studies.  相似文献   

9.
Enzyme-mediated reactions are a useful tool in mutation detection when using a microarray format. Discriminating probes attached to the surface of a DNA chip have to be accessible to target DNA and to the enzyme (ligase or polymerase) that catalyses the formation of a new phosphodiester bond. This requires an appropriate chemical platform. Recently, an oligonucleotide hairpin architecture incorporating multiple phosphorothioate moieties along the loop has been proposed as an effective approach to solid-phase minisequencing. We have explored in depth several variables (stem length, number of phosphorothioates, stem–loop architecture versus linear structure) involved in this strategy by using a solid-phase ligation reaction. Microarrays were fabricated either from aminosilyl-modified glass or from aminated polymeric surfaces made of poly-lysine. Both platforms were bromoacetylated and reacted with thiophosphorylated oligonucleotides. The resulting microarrays were tested using either a synthetic template or a PCR-amplified 16S rRNA genomic region as the target sequence. Our results confirm the robustness of the proposed chemistry. We extend its range of application to solid-phase ligation, demonstrating the effectiveness of multiple anchors and suggest that linear oligonucleotides incorporating multiple phosphorothioates are equivalent to their hairpin-structured counterparts.  相似文献   

10.
Antisense oligonucleotide phosphorothioates have been designed, which contain segments of oligodeoxynucleotide and 2′-O-methyloligoribonucleotides and studied for their biophysical and biochemical properties. Oligonucleotide phosphorothioates containing segments of 2′-O-methyloligoribonucleotides at both 3′- and 5′-ends show increased nuclease resistance, bind more strongly to complementary RNA targets, activate RNase and show increased inhibition of human immunodeficiency virus type I replication in infected cells.  相似文献   

11.
Oligonucleotide phosphorothioates have been synthesized using procaryotic DNA polymerase and oligonucleotide template/primer. The method facilitates the recovery of DNA polymerase and template/primer and is successful at the milligram scale. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Enzyme-mediated reactions are a useful tool in mutation detection when using a microarray format. Discriminating probes attached to the surface of a DNA chip have to be accessible to target DNA and to the enzyme (ligase or polymerase) that catalyses the formation of a new phosphodiester bond. This requires an appropriate chemical platform. Recently, an oligonucleotide hairpin architecture incorporating multiple phosphorothioate moieties along the loop has been proposed as an effective approach to solid-phase minisequencing. We have explored in depth several variables (stem length, number of phosphorothioates, stem-loop architecture versus linear structure) involved in this strategy by using a solid-phase ligation reaction. Microarrays were fabricated either from aminosilyl-modified glass or from aminated polymeric surfaces made of poly-lysine. Both platforms were bromoacetylated and reacted with thiophosphorylated oligonucleotides. The resulting microarrays were tested using either a synthetic template or a PCR-amplified 16S rRNA genomic region as the target sequence. Our results confirm the robustness of the proposed chemistry. We extend its range of application to solid-phase ligation, demonstrating the effectiveness of multiple anchors and suggest that linear oligonucleotides incorporating multiple phosphorothioates are equivalent to their hairpin-structured counterparts.  相似文献   

13.
Mammalian DNA methyltransferase 1 (Dnmt1) is responsible for copying the DNA methylation pattern during cell division. Since Dnmt1 plays an important role in carcinogenesis, it is of particular interest to search for its specific inhibitors. To design oligonucleotide inhibitors of human Dnmt1, a number of singlestranded, double-stranded, and hairpin DNA structures containing a canonical or a modified Dnmt1 recognition site (5′-CG) were constructed on the basis of a 22-nt sequence. Structural features such as a C:A mismatch, phosphorothioates, and hairpins proved capable of incrementally increasing the oligonucleotide affinity for Dnmt1. An improvement of inhibitory properties was also achieved by replacing the target cytosine with 5,6-dihydro-5-azacytosine, 5-methyl-2-pyrimidinone, or 6-methyl-pyrrolo-[2,3-d]-2-pyrimidinone. The concentration that caused 50% inhibition of methylation of 1 μM poly(dI-dC) · poly(dI-dC), a conventional DNA substrate, was approximately 10?7 M for the most efficient oligonucleotides. Under the same in vitro conditions, these oligonucleotide inhibitors demonstrated a substantially stronger effect compared to known Dnmt1 inhibitors, which were used as controls.  相似文献   

14.
The conjugation of oligonucleotide phosphorothioates with antennapedia peptide was studied in detail to allow efficient preparation of the conjugates on up to 15 mumol scale. Under optimized conditions, the use of oligonucleotides and the peptide in an equimolecular ratio gave the desired conjugates in more than 60% isolated yield.  相似文献   

15.
Abstract

Several thiono triester containing oligonucleotide phosphorothioates linked with a lipophilic group have been synthesized. Some of these modified antisense oligonucleotides show potent anti-HCMV activity as well as improved cellular association and nuclease resistance.  相似文献   

16.
Rapid progress in oligonucleotide therapeutics has continued over the past year as major programs established in the past four years have grown and begun to be productive. Important advances were reported in the medicinal chemistry of oligonucleotides and in understanding their pharmacodynamic properties. Significant progress was made in understanding the pharmacokinetic and toxicologic properties of first generation analogs, particularly phosphorothioates and one oligonucleotide, ISIS 2105, entered clinical trials. Additionally, combinatorial approaches designed to identify oligonucleotides that may bind to a variety of targets were reported.  相似文献   

17.
A novel method for the analysis of oligonucleotide-oligonucleotide interactions is described. Oligonucleotides of different sequence are synthesised in situ as stripes on the surface of a glass slide (see accompanying paper). Multiple hybridizations are then carried out on each oligonucleotide simultaneously to determine the dependence of oligonucleotide duplex formation on duplex length, base composition, hybridisation solvent and sequence complexity.  相似文献   

18.
Abstract

Oligodeoxyribonucleotide phosphorothioates, where one of the nonbridging oxygen of the internucleotide phosphate is formally replaced by a sulfur atom, are the first class to undergo human clinical trials. Ongoing phosphorothioate clinical trials against several disease targets has necessitated manufacture of very large quantities of oligonucleotide active pharmaceutical ingredient (API). Clinical trial and future market demands have stimulated effort towards developing cost efficient large scale synthesis of these complex bio-molecules. This effort has culminated in the routine synthesis of 20-mer oligodeoxyribonucleotide phosphorothioates at 150 mmole scale using only 1.75-fold molar excess of amidites in less than 8 h total synthesis time.  相似文献   

19.
Binding of nucleic acids to the prion protein (PrP) created a conundrum that required distinguishing between non-specific interactions and biologically important polynucleotides. In the process of developing selective ligands for PrP, we found using a single-stranded DNA thioaptamer library that the binding of thioaptamers to PrP occurs on at least two different sites on the protein. Selection against recombinant (rec) PrP of Syrian hamster (SHa) sequence 90-231 folded into an alpha-helical-rich conformation identified a 12-base consensus sequence within a series of 20 thioaptamers, all of which consist of 40 bases. Each thioaptamer was comprised of both normal and thio-dA modified bases. One thioaptamer designated 97 bound to recSHaPrP with affinity of 0.58(+/-0.1) nM; lower affinities for bovine (Bo), and human (Hu) were found, establishing that binding is dependent on the primary structure of PrP. High affinity binding of thioaptamer 97 to PrP was found to be mediated through the dodecyl sequence GACACAAGCCGA within the consensus region with five critical backbone modifications 5' to each dA residue. A control oligonucleotide with an equivalent number of phosphorothioates to thioaptamer 97 and a scrambled consensus sequence could not distinguish among the three PrP sequences. Control oligonucleotides bearing non-selected sequences bound to PrP at a sequence-independent DNA-binding site. In contrast, the high-affinity binding of thioaptamer 97 to PrP depends on (1) backbone modifications, (2) oligonucleotide sequence, and (3) PrP sequence.  相似文献   

20.
Abstract

A protocol has been established for the synthesis of stereoregular (all Rp) oligonucleotide phosphorothioates. A 25-mer oligodeoxynucleotide phosphorothioate has been synthesized and studied for biophysical and biochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号