首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   

2.
Ecosystem dynamics and the responses to climate change in mangrove forests are poorly understood. We applied the biogeochemical process model Biome-BGC to simulate the dynamics of net primary productivity (NPP) and leaf area index (LAI) under the present and future climate conditions in mangrove forests in Shenzhen, Zhanjiang, and Qiongshan across the southern coast of China, and in three monocultural mangrove stands of two native species, Avicennia marina and Kandelia obovata, and one exotic species, Sonneratia apetala, in Shenzhen. The soil hydrological process of the model was modified by incorporating a soil water (SW) stress index to account for the impact of the effective SW availability in the coastal wetland. Our modified Biome-BGC well predicted the dynamics of NPP and LAI in the mangrove forests at the study sites. We found that the six mangrove systems differed in sensitivity to variations in the effective SW availability. At the ecosystem level, however, soil salinity alone could not entirely explain the limitation of the effective SW availability on the productivity of mangrove forests. Increasing atmospheric CO2 concentration differentially affected growth of different mangrove species but only had a small impact on NPP (<7%); whereas a doubling of atmospheric CO2 concentration associated with a 2°C temperature rise would increase NPP by 14–19% across the three geographically separate mangrove forests and by 12% to as much as 68% across the three monocultural mangrove stands. Our simulation analysis indicates that temperature change is more important than increasing CO2 concentration in affecting productivity of mangroves at the ecosystem level, and that different mangrove species differ in sensitivity to increases in temperature and CO2 concentration.  相似文献   

3.
Net primary production, carbon storage and climate change in Chinese biomes   总被引:1,自引:0,他引:1  
Net primary production (NPP) and leaf area index (LAI) of Chinese biomes were simulated by BIOME3 under the present climate, and their responses to climate change and doubled CO2 under a future climatic scenario using output from Hadley Center coupled ocean‐atmosphere general circulation model with CO2 modelled at 340 and 500 ppmv. The model estimated annual mean NPP of the biomes in China to be between 0 and 1270.7 gC m‐2 yr‐1 at present. The highest productivity was found in tropical seasonal and rain forests while temperate forests had an intermediate NPP, which is higher than a lower NPP of temperate savannas, grasslands and steppes. The lowest NPP occurred in desert, alpine tundra and ice/polar desert in cold or arid regions, especially on the Tibetan Plateau. The lowest monthly NPP of each biome occurred generally in February and the highest monthly NPP occurred during the summer (June to August). The annual mean NPP and LAI of most of biomes at changed climate with CO2 at 340 and 500 ppmv (direct effects on physiology) would be greater than present. The direct effects of carbon dioxide on plant physiology result in significant increase of LAI and NPP. The carbon storage of Chinese biomes at present and changed climates was calculated by the carbon density and vegetation area method. The present estimates of carbon storage are totally 175.83 × 1012 gC (57.57 × 1012 gC in vegetation and 118.28 × 1012 gC in soils). Changed climate without and with the CO2 direct physiological effects will result in an increase of carbon storage of 5.1 and 16.33 × 1012, gC compared to present, respectively. The interaction between elevated CO2 and climate change plays an important role in the overall responses of NPP and carbon to climate change.  相似文献   

4.
The physiological response of vegetation to increasing atmospheric carbon dioxide concentration ([CO2]) modifies productivity and surface energy and water fluxes. Quantifying this response is required for assessments of future climate change. Many global climate models account for this response; however, significant uncertainty remains in model simulations of this vegetation response and its impacts. Data from in situ field experiments provide evidence that previous modeling studies may have overestimated the increase in productivity at elevated [CO2], and the impact on large‐scale water cycling is largely unknown. We parameterized the Agro‐IBIS dynamic global vegetation model with observations from the SoyFACE experiment to simulate the response of soybean and maize to an increase in [CO2] from 375 ppm to 550 ppm. The two key model parameters that were found to vary with [CO2] were the maximum carboxylation rate of photosynthesis and specific leaf area. Tests of the model that used SoyFACE parameter values showed a good fit to site‐level data for all variables except latent heat flux over soybean and sensible heat flux over both crops. Simulations driven with historic climate data over the central USA showed that increased [CO2] resulted in decreased latent heat flux and increased sensible heat flux from both crops when averaged over 30 years. Thirty‐year average soybean yield increased everywhere (ca. 10%); however, there was no increase in maize yield except during dry years. Without accounting for CO2 effects on the maximum carboxylation rate of photosynthesis and specific leaf area, soybean simulations at 550 ppm overestimated leaf area and yield. Our results highlight important model parameter values that, if not modified in other models, could result in biases when projecting future crop–climate–water relationships.  相似文献   

5.
The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 ( Wigley et al. 1991 ), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2‐SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y?1 during the 1990s, rising to 3.7–8.6 Pg C y?1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y?1) and a century later (0.3–6.6 Pg C y?1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate‐induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.  相似文献   

6.
李小涵  武建军  吕爱锋  刘明 《生态学报》2013,33(9):2936-2943
叶面积指数是作物生长状况的一个重要表征参数,也是研究陆地生态系统的一个重要的参数.当今世界温室气体排放逐年上升,气候变暖趋势明显,对气候变化敏感的农业将受到影响.在全球变化的背景下,采用农业技术转移决策支持系统(DSSAT)系统,通过在黄淮海平原典型站点模拟3种CO2浓度条件下冬小麦在水分充足和水分亏缺2种情境下的生长过程,分析不同CO2浓度下水分亏缺对冬小麦叶面积指数的影响差异.研究发现,CO2浓度升高对叶面积指数增长有促进作用,且在干旱情况下对叶面积指数的正效应比湿润情况下更为明显,在CO2浓度倍增条件下,发生水分亏缺的作物叶面积指数数倍增长.研究结论有助于分析CO2浓度变化对农作物生长过程的影响,为农田水分管理提供依据,又为估算叶面积指数提出了一种模型的方法.  相似文献   

7.
Aim A regional model of vegetation dynamics was enhanced to include biogeochemical cycling of nitrogen and was then applied to a forest transect in east China (FTEC) in order to investigate the responses of the transect to possible global change. Location Eastern China. Methods Biomass and nitrogen concentration of green and nongreen portions of vegetation, moisture contents of three soil layers, and total and available soil nitrogen are included as state variables in the enhanced model. The model was parameterized and validated against field observations of biomass, productivity, plant and soil nitrogen concentration, nitrogen uptake, a vegetation index derived from satellite remote sensing and digital maps of vegetation and soil distributions along a forest transect in eastern China (FTEC). The model was applied to FTEC in order to investigate the responsive characteristics of the ecosystems to global climatic change. Scenarios of climate change under doubled CO2 produced by seven general circulation models (GCM) were used to drive the model. Results The simulations indicated that the model is capable of simulating accurately potential vegetation distribution and net primary productivity under contemporary climatic conditions. The simulations for GCM‐projected future climate scenarios with doubled atmospheric CO2 concentration predicted that broadleaf forests would increase, but conifer forests, shrubs and grasses would decrease; and that deciduous forests would have the largest relative increase, but evergreen shrubs would have the largest decrease. Conclusions The overall effects of doubling CO2 and climatic changes on FTEC were to produce an increased net primary productivity (NPP) at equilibrium for all seven GCM scenarios. The inclusion of nitrogen dynamics in the model imposes more constraint on the responses of FTEC to climatic change than the previous version of the model without nitrogen dynamics. Temperature exerts a stronger control on NPP than precipitation, as indicated by the negative correlations between NPP and temperature. The southern portion of FTEC, at latitudes less than 33 °N, show much larger increases in annual NPP than in the north. However, the predicted range of NPP increases is much larger in the north than in the south.  相似文献   

8.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

9.
The terrestrial carbon cycle plays a critical role in determining levels of atmospheric CO2 that result from anthropogenic carbon emissions. Elevated atmospheric CO2 is thought to stimulate terrestrial carbon uptake, through the process of CO2 fertilization of vegetation productivity. This negative carbon cycle feedback results in reduced atmospheric CO2 growth, and has likely accounted for a substantial portion of the historical terrestrial carbon sink. However, the future strength of CO2 fertilization in response to continued carbon emissions and atmospheric CO2 rise is highly uncertain. In this paper, the ramifications of CO2 fertilization in simulations of future climate change are explored, using an intermediate complexity coupled climate–carbon model. It is shown that the absence of future CO2 fertilization results in substantially higher future CO2 levels in the atmosphere, as this removes the dominant contributor to future terrestrial carbon uptake in the model. As a result, climate changes are larger, though the radiative effect of higher CO2 on surface temperatures in the model is offset by about 30% due to reduced positive dynamic vegetation feedbacks; that is, the removal of CO2 fertilization results in less vegetation expansion in the model, which would otherwise constitute an important positive surface albedo‐temperature feedback. However, the effect of larger climate changes has other important implications for the carbon cycle – notably to further weaken remaining carbon sinks in the model. As a result, positive climate–carbon cycle feedbacks are larger when CO2 fertilization is absent. This creates an interesting synergism of terrestrial carbon cycle feedbacks, whereby positive (climate–carbon cycle) feedbacks are amplified when a negative (CO2 fertilization) feedback is removed.  相似文献   

10.
Vegetation exerts large control on global biogeochemical cycles through the processes of photosynthesis and transpiration that exchange CO2 and water between the land and the atmosphere. Increasing atmospheric CO2 concentrations exert direct effects on vegetation through enhanced photosynthesis and reduced stomatal conductance, and indirect effects through changes in climatic variables that drive these processes. How these direct and indirect CO2 impacts interact with each other to affect plant productivity and water use has not been explicitly analysed and remains unclear, yet is important to fully understand the response of the global carbon cycle to future climate change. Here, we use a set of factorial modelling experiments to quantify the direct and indirect impacts of atmospheric CO2 and their interaction on yield and water use in bioenergy short rotation coppice poplar, in addition to quantifying the impact of other environmental drivers such as soil type. We use the JULES land‐surface model forced with a ten‐member ensemble of projected climate change for 2100 with atmospheric CO2 concentrations representative of the A1B emissions scenario. We show that the simulated response of plant productivity to future climate change was nonadditive in JULES, however this nonadditivity was not apparent for plant transpiration. The responses of both growth and transpiration under all experimental scenarios were highly variable between sites, highlighting the complexity of interactions between direct physiological CO2 effects and indirect climate effects. As a result, no general pattern explaining the response of bioenergy poplar water use and yield to future climate change could be discerned across sites. This study suggests attempts to infer future climate change impacts on the land biosphere from studies that force with either the direct or indirect CO2 effects in isolation from each other may lead to incorrect conclusions in terms of both the direction and magnitude of plant response to future climate change.  相似文献   

11.
The potential for feedbacks between terrestrial vegetation, climate, and the atmospheric CO2 partial pressure have been addressed by modelling. Previous research has established that under global warming and CO2 enrichment, the stomatal conductance of vegetation tends to decrease, causing a warming effect on top of the driving change in greenhouse warming. At the global scale, this positive feedback is ultimately changed to a negative feedback through changes in vegetation structure. In spatial terms this structural feedback has a variable geographical pattern in terms of magnitude and sign. At high latitudes, increases in vegetation leaf area index (LAI) and vegetation height cause a positive feedback, and warming through reductions in the winter snow-cover albedo. At lower latitudes when vegetation becomes more sparse with warming, the higher albedo of the underlying soil leads to cooling. However, the largest area effects are of negative feedbacks caused by increased evaporative cooling with increasing LAI. These effects do not include feedbacks on the atmospheric CO2 concentration, through changes in the carbon cycle of the vegetation. Modelling experiments, with biogeochemical, physiological and structural feedbacks on atmospheric CO2, but with no changes in precipitation, ocean activity or sea ice formation, have shown that a consequence of the CO2 fertilization effect on vegetation will be a reduction of atmospheric CO2 concentration, in the order of 12% by the year 2100 and a reduced global warming by 0.7°C, in a total greenhouse warming of 3.9°C.  相似文献   

12.
Increases in the atmospheric concentration of carbon dioxide and associated changes in climate may exert large impacts on plant physiology and the density of vegetation cover. These may in turn provide feedbacks on climate through a modification of surface‐atmosphere fluxes of energy and moisture. This paper uses asynchronously coupled models of global vegetation and climate to examine the responses of potential vegetation to different aspects of a doubled‐CO2 environmental change, and compares the feedbacks on near‐surface temperature arising from physiological and structural components of the vegetation response. Stomatal conductance reduces in response to the higher CO2 concentration, but rising temperatures and a redistribution of precipitation also exert significant impacts on this property as well as leading to major changes in potential vegetation structure. Overall, physiological responses act to enhance the warming near the surface, but in many areas this is offset by increases in leaf area resulting from greater precipitation and higher temperatures. Interactions with seasonal snow cover result in a positive feedback on winter warming in the boreal forest regions.  相似文献   

13.
The interannual net primary production variation and trends of a Picea schrenkiana forest were investigated in the context of historical changes in climate and increased atmospheric CO2 concentration at four sites in the Tianshan Mountain range, China. Historical changes in climate and atmospheric CO2 concentration were used as Biome–BGC model drivers to evaluate the spatial patterns and temporal trends of net primary production (NPP). The temporal dynamics of NPP of P. schrenkiana forests were different in the western, middle and eastern sites of Tianshan, which showed substantial interannual variation. Climate changes would result in increased NPP at all study sites, but only the change in NPP in the western forest (3.186 gC m−2 year−1, P < 0.05) was statistically significant. Our study also showed a higher increase in the air temperature, precipitation and NPP during 1987–2000 than 1961–1986. Statistical analysis indicates that changes in NPP are positively correlated with annual precipitation (R = 0.77–0.92) but that NPP was less sensitive to changes in air temperature. According to the simulation, increases in atmospheric CO2 increased NPP by improving the water use efficiency. The results of this study show that the Tianshan Mount boreal forest ecosystem is sensitive to historical changes in climate and increasing atmospheric CO2. The relative impacts of these variations on NPP interact in complex ways and are spatially variable, depending on local conditions and climate gradients. W. Sang and H. Su contributed equally to this paper, arranged in alphabetical order by surnames.  相似文献   

14.
彭静  丹利 《生态学报》2016,36(21):6939-6950
利用了加拿大地球系统模式CanE SM2(Canadian Earth System Model of the CCCma)的结果,针对百年尺度大气CO_2浓度升高和气候变化如何影响陆地生态系统碳通量这一问题,分析了1850—1989年间陆地生态系统碳通量趋势对二者响应,以及与关键气候系统变量的关系。结果表明,140年间,当仅仅考虑CO_2浓度升高影响时,陆地生态系统净初级生产力(NPP)增加了117.1 gC m~(-2)a~(-1),土壤呼吸(Rh)增加了98.4 gC m~(-2)a~(-1),净生态系统生产力(NEP)平均增加了18.7 gC m~(-2)a~(-1)。相同情景下,全球陆地生态系统的NPP呈显著增加的线性趋势(约为0.30 PgC/a~2),Rh同样呈显著增加线性趋势(约为0.25 PgC/a~2)。仅仅考虑气候变化单独影响时,NPP平均减少了19.3 gC/m~2,土壤呼吸减少了8.5 gC/m~2,NEP减少了10.8 gC/m~2。在此情景下,整个陆地生态系统的NPP线性变化趋势约为-0.07 PgC/a~2(P0.05),Rh线性变化趋势约为-0.04 PgC/a~2(P0.05)。综合二者的影响,前者是决定陆地生态系统碳通量变化幅度和空间分布的最重要影响因子,其影响明显大于气候变化。值得注意的是,CanE SM2并没有考虑氮素的限制作用,所以CO_2浓度升高对植被的助长作用可能被高估。此外,气候变化的贡献也不容忽视,特别是在亚马逊流域,由于当温度升高、降水和土壤湿度减少,NPP和Rh均呈显著减少趋势。  相似文献   

15.
Leaf area index (LAI) and its seasonal dynamics are key determinants of terrestrial productivity and, therefore, of the response of ecosystems to a rising atmospheric CO2 concentration. Despite the central importance of LAI, there is very little evidence from which to assess how forest LAI will respond to increasing [CO2]. We assessed LAI and related leaf indices of a closed-canopy deciduous forest for 4 years in 25-m-diameter plots that were exposed to ambient or elevated CO2 (542 ppm) in a free-air CO2 enrichment (FACE) experiment. LAI of this Liquidambar styraciflua (sweetgum) stand was about 6 and was relatively constant year-to-year, including the 2 years prior to the onset of CO2 treatment. LAI throughout the 1999–2002 growing seasons was assessed through a combination of data on photosynthetically active radiation (PAR) transmittance, mass of litter collected in traps, and leaf mass per unit area (LMA). There was no effect of [CO2] on any expression of leaf area, including peak LAI, average LAI, or leaf area duration. Canopy mass and LMA, however, were significantly increased by CO2 enrichment. The hypothesized connection between light compensation point (LCP) and LAI was rejected because LCP was reduced by [CO2] enrichment only in leaves under full sun, but not in shaded leaves. Data on PAR interception also permitted calculation of absorbed PAR (APAR) and light use efficiency (LUE), which are key parameters connecting satellite assessments of terrestrial productivity with ecosystem models of future productivity. There was no effect of [CO2] on APAR, and the observed increase in net primary productivity in elevated [CO2] was ascribed to an increase in LUE, which ranged from 1.4 to 2.4 g MJ–1. The current evidence seems convincing that LAI of non-expanding forest stands will not be different in a future CO2-enriched atmosphere and that increases in LUE and productivity in elevated [CO2] are driven primarily by functional responses rather than by structural changes. Ecosystem or regional models that incorporate feedbacks on resource use through LAI should not assume that LAI will increase with CO2 enrichment of the atmosphere.  相似文献   

16.
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought‐tolerant biomes in the tropics. These features are broadly consistent with pollen‐based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought‐tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low‐latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial‐interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.  相似文献   

17.
Responses of forest ecosystems to increased atmospheric CO2 concentration have been studied in few free‐air CO2 enrichment (FACE) experiments during last two decades. Most studies focused principally on the overstory trees with little attention given to understory vegetation. Despite its small contribution to total productivity of an ecosystem, understory vegetation plays an important role in predicting successional dynamics and future plant community composition. Thus, the response of understory vegetation in Pinus taeda plantation at the Duke Forest FACE site after 15–17 years of exposure to elevated CO2, 6–13 of which with nitrogen (N) amendment, was examined. Aboveground biomass and density of the understory decreased across all treatments with increasing overstory leaf area index (LAI). However, the CO2 and N treatments had no effect on aboveground biomass, tree density, community composition, and the fraction of shade‐tolerant species. The increases of overstory LAI (~28%) under elevated CO2 resulted in a reduction of light available to the understory (~18%) sufficient to nullify the expected growth‐enhancing effect of elevated CO2 on understory vegetation.  相似文献   

18.
Aim To estimate the effects of full‐glacial atmospheric CO2 concentrations and climate upon leaf area index (LAI), using both global vegetation models and palaeoecological data. Prior simulations indicate lowered LAIs at the Last Glacial Maximum (LGM), but this is the first attempt to corroborate predictions against observations. Location Eastern North America and eastern Beringia. Methods Using a dense surface pollen data set and remotely sensed LAIs from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, we evaluate the ability of analogue‐based techniques to reconstruct modern LAIs from pollen data. We then apply analogue techniques to LGM pollen records, calculate the ratio of LGM to modern LAIs (RLAI) and compare reconstructed RLAIs to RLAIs simulated by BIOME4. Sensitivity experiments with BIOME4 distinguish the effects of CO2 and climate on glacial LAIs. Results Modern LAIs are skilfully predicted (r2= 0.83). Data and BIOME4 indicate that LAIs at the LGM were up to 12% lower than modern values in eastern North America and 60–94% lower in Beringia. In eastern North America, LGM climates partially counteracted CO2‐driven decreases in LAI, while in Beringia both contributed to lowered LAIs. Main conclusions In both regions climate is the primary driver of LGM LAIs. The decline in eastern North America LAIs is smaller than previously reported, so regional vegetation feedbacks to LGM climate may have been less significant than previously supposed. CO2 exerts both physiological and community effects upon LAI, by regulating resource availability for leaf production and by influencing the competitive balance among species and hence the composition and structure of plant communities. Pollen‐based reconstructions using analogue methods do not incorporate the physiological effect and so are upper estimates of full‐glacial LAIs. BIOME4 sensitivity experiments indicate that the community and physiological effects together caused 10% to 20% decrease in LAIs at the LGM, so simulated RLAIs that are 80–100% of reconstructed RLAIs are regarded as consistent with data.  相似文献   

19.
Endemic species and ecosystem sensitivity to climate change in Namibia   总被引:1,自引:0,他引:1  
We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ~2050 and ~2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ~2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ~2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号