首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For free-spawning organisms that release gametes into the sea, sperm limitation (too few sperm to fertilize all eggs) is a major factor limiting reproductive success. Given such circumstances, the presence of several mechanisms to prevent polyspermy (too many sperm) may seem paradoxical; however, a growing body of data suggests that natural fertilization levels, though variable, can routinely be high. Under such conditions, polyspermy is much more likely. The tension between sperm limitation and polyspermy represents sexual conflict because males, in competing to fertilize as many eggs as possible, can impose lethal costs on eggs if multiple sperm gain entry. Here we present data for a marine invertebrate indicating high levels of polyspermy under sperm-limited conditions. When the sea urchin Evechinus chloroticus was induced to spawn in situ, mean rates of polyspermy were [Formula: see text], and polyspermy was recorded at rates as high as 62.7%. Polyspermy was nearly always present, even when fertilization rates were <50%, confirming predictions that it should be present under sperm-limited conditions. Both sperm limitation and polyspermy imposed substantial reproductive costs, and we conclude that both sexual conflict related to polyspermy and sperm limitation have been simultaneous strong selective forces shaping the evolution of reproductive traits in the sea.  相似文献   

2.
Previous work has established that the polyspermy block in Urechis acts at the level of sperm-egg membrane fusion. (J. Exp. Zool. 196:105). Present results indicate that during the first 5--10 min after insemination the block is mediated by a positive shift in membrane potential (the fertilization potential) elicited by the penetrating sperm, since holding the membrane potential of the unfertilized egg positive by passing current reduces the probability of sperm entry, while progressively reducing the amplitude of the fertilization potential by decreasing external Na+ progressively enhances multiple sperm penetrations. Also, a normal fertilization potential is correlated with a polyspermy block even under conditions (pH 7) in which eggs do not develop. We have investigated the mechanism of the electrical polyspermy block by quantifying the relationship between sperm incorporation, membrane potential and ion fluxes. Results indicate that the polyspermy block is mediated by the electrial change per se and not by the associated fluxes of Na+, Ca++, and H+.  相似文献   

3.
Sperm entry into the oocyte of the starfish, Asterina pectinifera, was prevented when the membrane potential of the oocyte was held more positive than −10 to −5 mV, and multiple sperm entries were induced when the potential was held more negative. Based on this potential-dependent fertilization block mechanism, it was demonstrated that an activation potential (AVP) which is induced immediately after the attachment of the first sperm to the egg surface plays the role of a fast polyspermy block. The AVP-mediated polyspermy block mechanism develops as the oocyte matures and deteriorates as it ages. AVPs of mature oocytes exceeded −5 mV (the critical potential level for fertilization block) within 1 sec, and the potential stayed at +12 mV even after the initiation of fertilization membrane elevation. Consequently, the entry of a second sperm is prevented. In contrast, AVPs of overripe oocytes took about 15 sec to attain −5 mV, or they did not attain −5 mV at all. In overripe oocytes multiple sperm entries were associated with “step depolarization(s)” in the rising phase of the AVPs before membrane elevation took place. Immature oocytes generated AVPs associated with sperm entries, but without membrane elevation. AVPs in immature oocytes were characterized by the step depolarization(s) in the rising phase, and an AVP could be evoked again by a second insemination 20 min after the first insemination. These findings indicate that immature oocytes lack both fast and slow polyspermy block mechanisms.  相似文献   

4.
The Puerto Rican tree frog, Eleutherodactylus coqui, has internal fertilization and direct development on land. In light of these reproductive adaptations, the events of fertilization and early development were studied. Cytological examination of just-fertilized eggs showed that sperm entry is restricted to about 10% of the surface of these large, yolky eggs, and all nuclear events of the first cell cycle occur near the animal pole. Although the oocytes have cortical granules, a number of polyspermic fertilizations were found. One clutch consisted of eggs with a high frequency of polyspermy and of normal development. This raises the possibility that normal development can occur despite multiple sperm entry, a situation not found in other anuran amphibians. With respect to saline requirements, the sperm and the embryo are similar to those in amphibians with external fertilization and aqueous development. Sperm motility was high in low-tonicity conditions, and the normally terrestrial embryo could develop completely from a fertilized egg to a froglet in a low-tonicity aqueous solution.  相似文献   

5.
Fertilization by more than one sperm in sea urchins inevitably leads to uneven division and death of the embryo. We provide evidence for a block against this polyspermy involving the hydrogen peroxide release by the egg during fertilization that is triggered by entry of the successful sperm. Polyspermy in 100% of fertilized eggs was demonstrated when catalase was added to destroy hydrogen peroxide immediately after fertilization. Soybean trypsin inhibitor, another polyspermic agent, is shown to prevent the formation of hydrogen peroxide in the fertilized egg. This suggests that the protease released from egg cortical granules during fertilization plays a role in the hydrogen peroxide generating system.  相似文献   

6.
Fertilization of an egg by multiple sperms, polyspermy, is lethal to most sexually reproducing species. To combat the entry of additional sperm into already fertilized eggs, organisms have developed various polyspermy blocks. One such barrier, the fast polyspermy block, uses a fertilization‐activated depolarization of the egg membrane to electrically inhibit supernumerary sperm from entering the egg. The fast block is commonly used by eggs of oviparous animals with external fertilization. In this review, we discuss the history of the fast block discovery, as well as general features shared by all organisms that use this polyspermy block. Given the diversity of habitats of external fertilizers, the fine details of the fast block‐signaling pathways differ drastically between species, including the identity of the depolarizing ions. We highlight the known molecular mediators of these signaling pathways in amphibians and echinoderms, with a fine focus on ion channels that signal these fertilization‐evoked depolarizations. We also discuss the investigation for a fast polyspermy block in mammals and teleost fish, and we outline potential fast block triggers. Since the first electrical recordings made on eggs in the 1950s, the fields of developmental biology and electrophysiology have substantially matured, and yet we are only now beginning to discern the intricate molecular mechanisms regulating the fast block to polyspermy.  相似文献   

7.
8.
Y Iwao 《Developmental biology》1989,134(2):438-445
At fertilization, the egg of the primitive urodele, Hynobius nebulosus, produced a fertilization potential which rose from -12 to +47 mV. A similar activation potential was elicited by pricking with a needle, by applying A23187, or by electric shock. The potential change was mediated by an increased permeability to Cl-. Clamping the egg's membrane potential at +40 mV blocked fertilization, while clamping at +20 mV induced polyspermy. These results indicated the occurrence of an electrical polyspermy block, typical of anurans, but atypical of urodeles. Furthermore, Hynobius eggs fertilized by natural mating incorporated only one sperm nucleus, and experimentally polyspermic eggs underwent multipolar division. Accessory sperm did not degenerate in the egg cytoplasm, indicating lack of an intracellular polyspermy block. By comparison, fertilization of Bufo japonicus (anuran) was also voltage dependent, whereas that of Cynops pyrrhogaster (urodele) was voltage independent. Thus polyspermy prevention mechanisms in Hynobius closely resemble those of anuran amphibians and differ from those of higher urodeles.  相似文献   

9.
The consequences of interactions between porcine sperm, eggs, and oviduct cells before and during fertilization in vitro (IVF) has been examined with particular reference to the block to polyspermy. The pattern of polypeptides secreted by porcine oviduct epithelial cells has been determined and its effects on sperm both during pre-fertilization co-culture and during fertilization have been examined. In standard IVF procedures with no oviduct cell involvement, high rates of penetration (91%) were accompanied by equally high rates of multiple sperm penetration (91% of penetrated eggs). Fertilization on oviduct cell monolayers or a combination of 1 h co-culture of sperm and oviduct cells before the addition of in vitro matured oocytes did not reduce polyspermy. However, a sperm-oviduct cell co-culture period of 2.5 h followed by IVF on oviduct cells selectively reduced the rate of polyspermy by 40% and 50% in two separate series of trials (United Kingdom and Japan, respectively): Overall fertilization rates after this treatment were high (95% or 84%, respectively). A 3.5 h period of pre-fertilization co-culture further reduced polyspermy to only 14% of penetrated eggs, but this treatment was accompanied by a sharp drop in the fertilization rate from an overall mean of 88% for all other groups to 19% after 3.5 h co-culture.  相似文献   

10.
Sperm entry induces polarity in fucoid zygotes   总被引:1,自引:0,他引:1  
Fucoid zygotes establish a rhizoid-thallus growth axis in response to environmental signals; however, these extrinsic cues are not necessary for polarization, suggesting that zygotes may have inherent polarity. The hypothesis that sperm entry provides a default pathway for polarization of zygotes cultured in the absence of environmental signals was tested, and was supported by several lines of evidence. First, an F-actin patch, a cortical marker of the rhizoid pole, formed at the sperm entry site within minutes of fertilization. Second, the sperm entry site predicted the site of polar adhesive secretion (the first morphological manifestation of the rhizoid pole) and the position of rhizoid outgrowth. Third, when fertilization was restricted to one hemisphere of the egg, rhizoid outgrowth always occurred from that hemisphere. Fourth, delivery of sperm to one location within a population of eggs resulted in polarization of both adhesive secretion and rhizoid outgrowth toward the sperm source. Finally, induction of polyspermy using low sodium seawater increased the frequency of formation of two rhizoids. Sperm entry therefore provides an immediate default axis that can later be overridden by environmental cues.  相似文献   

11.
Depolarization of the sea urchin egg's membrane is required for two processes during fertilization: the entry of the fertilizing sperm and the block to polyspermy which prevents the entry of supernumerary sperm. In an immature sea urchin oocyte, the depolarization is very small in response to the attachment of a sperm. The purpose of this study was to determine whether the depolarization evoked by sperm attaching to an oocyte can facilitate sperm entry or induce the block to polyspermy. Individual oocytes of the sea urchin with diameters which ranged from 86 to 102% that of the average diameter for mature eggs from the same female were examined. The oocytes have a membrane potential of -73 +/- 6 mV (SD, n = 80) and a very low input resistance compared to that of mature eggs. Single sperm, following attachment to an oocyte, elicit a brief, small depolarization with a maximum amplitude of 8 +/- 1.4 mV (SE, n = 15), frequently followed by the formation of tiny filament-like fertilization cones, but the sperm fail to enter. If oocytes are voltage-clamped at membrane potentials more negative than -20 mV, following attachment of the sperm small transient inward currents occur, similar filament-like cones form, and the sperm do not enter. When many sperm attach to an oocyte which is not voltage clamped, the depolarizations sum to create a large depolarization with an amplitude of 60 to 80 mV, which shifts the oocyte's membrane potential to a value between -10 and +5 mV; more positive values are not attained. At such membrane potentials, whether the potential is maintained by the summed depolarizations of many attached sperm or by voltage clamp, large fertilization cones form, the sperm enter, and the oocytes can become highly polyspermic. In oocytes voltage clamped at +20 mV, however, both sperm entry and fertilization cone formation are suppressed. Therefore, both types of voltage-dependence for sperm entry are present in oocytes, although the depolarization caused by a single sperm is not large enough to permit its entry, nor is the depolarization caused by many sperm sufficient to prevent the entry of supernumerary sperm.  相似文献   

12.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

13.
Xia P  Wang Z  Yang Z  Tan J  Qin P 《Cell and tissue research》2001,303(2):271-275
Polyspermy is generally considered a pathological phenomenon in mammals. Incidence of polyspermy in porcine eggs in vivo is extremely high (30-40%) compared with other species, and polyspermy rate in the in vitro fertilized eggs in pigs can reach 65%. It is still unknown whether polyspermy to a certain degree is a physiological condition in pigs, and whether porcine eggs have any capability with which to remove the accessory sperm in the cytoplasm. The objectives in the present study are to observe the ultrastructural changes of accessory sperm during early embryonic development in pigs. A total of 58 normal, early embryos at one-, two, three-, and four-cell and morular stages were collected from gilts and were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface ultrastructure showed that sperm fusion with the zona pellucida was a continuous process during one-, two-, three-, and four-cell and morular stages, as observed by the SEM. Accessory sperm were present in the cytoplasm of cleaved embryos. The sperm heads in the cytoplasm of cleaved embryos did not decondense. TEM revealed the presence of a condensed sperm head within a lysosome (or phagolysosome) in a three-cell embryo. These observations suggest that polyspermy may be a physiological condition in pigs and that early embryos may develop to term if accessory sperm do not interrupt the embryo genome. Furthermore, lysosome activity could be another physiological mechanism for removing accessory sperm in the cytoplasm of fertilized eggs and cleaved embryos after fertilization in pigs.  相似文献   

14.
Timing the early events during sea urchin fertilization   总被引:1,自引:0,他引:1  
To determine precisely the timing, duration, and sequences of the earliest events during sea urchin (Lytechinus variegatus) fertilization, the bioelectric recordings of microelectrode-impaled eggs were electronically superimposed, by video mixing, over the microscopic differential interference contrast image of the same egg at insemination. Videotape analysis, utilizing a slow-motion analyzer, demonstrates that the successful sperm triggers the bioelectric membrane potential reversal within 3.36 +/- 3.02 sec (0.72-9.76 sec range; sigma = 23 eggs) of sperm-egg attachment. This sperm, actively gyrating about its attachment site, is indistinguishable from the other, unsuccessful sperm until 12.66 +/- 2.72 sec (6.72-16.60 sec range; sigma = 15) later when the sperm tail ceases its beating and sperm incorporation ensues. The cortical granules begin to discharge, and the fertilization coat starts to elevate at the fusion site at 20.79 +/- 3.18 sec (13.62-26.08 sec range; sigma = 12) after the onset of the fertilization potential, i.e., an average of about 8 sec after the cessation of sperm-tail motility during incorporation. In most cases, the bioelectric responses starts within 7 sec of sperm adhesions; if the data are analyzed excluding the few slow cases, the fertilization potential is found to start 1.93 sec (+/- 1.28 sec) after sperm attachment. These results indicate that the first successful sperm triggers the fast block to polyspermy within 3.4 sec, perhaps as quickly as 1.9 sec, of sperm-egg adhesion, about 13 sec before the first morphological indication of fertilization, and about 21 sec before the characteristic elevation of the fertilization coat responsible for the late block to polyspermy.  相似文献   

15.
The electrical response of mature anuran eggs to the fertilizing sperm consists of a rapid depolarization and a decrease in resistance of the plasma membrane (fertilization potential) and serves as a fast block to polyspermy. We report here that the fertilization potential, previously thought to be the earliest electrical response of the egg, is preceded in Rana temporaria by changes in voltage noise. Voltage noise was recorded after insemination and compared in monospermic and NaI-induced polyspermic eggs. Fertilization potential in monospermic eggs arised at 1 min 45 sec to 2 min 15 sec after insemination, and that in NaI-induced polyspermic eggs did at 3 min to 3 min 30 sec after insemination. However, the increase in voltage noise was detected at the similar time (1–2 min 30 sec) after insemination in both the eggs. The duration of voltage noise increase before the fertilization potential was larger in polyspermic eggs (50–105 sec) than in monospermic eggs (10–40 sec). Polyspermic fertilization in Rana temporaria induced by NaI was checked by visualizing multiple sperm entry sites with the scanning microscope. The process of sperm entry and the development of the fertilization body are similar to those occurring with monospermic fertilization; furthermore all supernumerary sperm fuse only with the animal hemisphere of the egg. Although the physiological basis of the changes in voltage noise is unclear, these alterations appear to be the earliest electrical response to sperm yet reported.  相似文献   

16.
This study evaluated the effects of porcine oviduct-specific glycoprotein (pOSP) on in vitro fertilization (IVF), polyspermy, and development to blastocyst. Experiment 1 evaluated the effects of various concentrations (0-100 microgram/ml) of purified pOSP on fertilization parameters, including penetration, polyspermy, male pronuclear formation, and mean number of sperm penetrated per oocyte. Experiment 2 examined the ability of an anti-pOSP immunoglobulin G to inhibit the observed effects of pOSP on fertilization parameters. Experiments 3 and 4 examined various concentrations of pOSP (0-100 microgram/ml) on zona pellucida solubility and sperm binding, respectively. Lastly, experiment 5 assessed the effects of various concentrations of pOSP (0-100 microgram/ml) on the in vitro embryo cleavage rate and development to blastocyst. Pig oocytes matured and fertilized in vitro were used for all experiments. An effect of treatment (P < 0.05) was detected for pOSP on penetration, polyspermy, and mean number of sperm per oocyte. Concentrations for pOSP of 0-50 microgram/ml had no effect on sperm penetration rates; however, compared with the control, 100 microgram/ml significantly decreased the penetration rate (74% vs. 41%). Addition of 10-100 microgram/ml significantly reduced the polyspermy rate compared with the control (61% vs. 24-29%). The decrease in polyspermy achieved by addition of pOSP during preincubation and IVF was blocked with a specific antibody to pOSP. No effect of treatment was observed on zona digestion time relative to the control; however, the number of sperm bound to the zona pellucida was significantly decreased by treatment (P < 0.05). Compared with the control, all concentrations of pOSP examined reduced the number of sperm bound per oocyte (45 vs. 19-34). A treatment effect (P < 0.05) was observed for pOSP on embryo development to blastocyst but not on cleavage rates. Addition of pOSP during preincubation and fertilization significantly increased postcleavage development to blastocyst, but a synergistic stimulation on development was not detected when pOSP was included during in vitro culture. These results indicate that exposure to pOSP before and during fertilization reduces the incidence of polyspermy in pig oocytes, reduces the number of bound sperm, and increases postcleavage development to blastocyst.  相似文献   

17.
Barriers to polyspermy (fertilization of a female gamete by more than one sperm) are essential to successful reproduction in a wide range of organisms including mammals, echinoderms, fish, molluscs, and algae. In animals and fucoid algae, polyspermy results in early death of the zygote due to transmission of extra centrioles from the sperm and consequent disruptions to the mitotic spindle. Accordingly, a variety of mechanisms have evolved to prevent penetration of an egg by more than one sperm, or more than one sperm nucleus from fusing with an egg nucleus. The evolution of internal fertilization has also provided an opportunity to limit the number of sperm that gain access to each egg, as occurs in the mammalian female reproductive tract. Polyspermy and polyspermy barriers in plants have received much less attention. Plants lack centrioles and therefore, polyspermy would not be expected to cause lethal aberrant spindle organization. However, we find evidence from cytological, genetic and in vitro fertilization studies for polyspermy barriers in plants. Angiosperms, like mammals, are internally fertilized, and exert a high level of control over the number of sperm that have access to each female gamete. In particular, regulation of pollen tube growth ensures that in general only two sperm enter each embryo sac, where one fertilizes the egg and the other the central cell. Despite this 1:1 ratio of sperm to gametes within the embryo sac, angiosperms still require a mechanism to ensure that each female gamete is fertilized by one and only one sperm. Here, we present evidence suggesting that a polyspermy block on the egg may be part of the mechanism that promotes faithful double fertilization.  相似文献   

18.
To ensure normal development, most animals have evolved a number of mechanisms to block polyspermy including prevention of binding to surface coats as well as sperm-egg fusion. Ascidian sperm bind to vitelline coat (VC) glycosides. In the genus Ascidia, N-acetylglucosamine (GlcNAc) is the ligand to which sperm bind. The number of sperm bound to the VC is biphasic following fertilization; sperm binding increases through the first minute or so, then abruptly declines. At fertilization, the eggs of Ascidia callosa, A. ceratodes, A. mentula, A. nigra and Phallusia mammillata release N-acetylglucosaminidase into the sea water (SW). This has been shown to inactivate VC GlcNAc groups, blocking the binding of supernumerary sperm and polyspermy in A. nigra. This block to polyspermy is inactivated by GlcNAc (2mM) or 150 mM-Na+ (choline substituted) SW. These treatments are not additive and therefore probably affect the same process. In A. callosa, fertilization in low Na+ SW causes a 60% decline in enzyme release and a similar increase in the number of sperm remaining on the VC at 4 min as well as a great increase in polyspermy. Thus the principal block to polyspermy in ascidian eggs involves the release of N-acetylglucosaminidase which appears to be Na+ dependent. Enzyme activity is found in the supernatant SW by 15 s after fertilization, suggesting that it is stored very near the egg surface. Histochemical staining of whole eggs and embryos shows loss of surface-associated enzyme activity following fertilization. Like other lysosomal enzymes this N-acetylglucosaminidase is mannosylated and has an acidic pH optimum.  相似文献   

19.
Benzohydroxamic acid (BHA) is a competitive inhibitor of the sea urchin sperm peroxidase. We now report that addition of BHA to fertilization cultures of Arbacia punctulata promotes polyspermy. This effect is dose and sperm density dependent. The cortical reaction (elevation of the fertilization envelope) is not retarded by BHA. BHA must be added to the cultures before the eggs complete the cortical reaction at 60 sec post insemination in order to induce polyspermy. Since sea urchin eggs release H2O2 during the cortical reaction at fertilization, these findings support our hypothesis that the sperm peroxidase has a functional role in helping to prevent polyspermy.  相似文献   

20.
We evaluated the effects of an environmentally relevant mixture of more than 15 organochlorines on the development of pig oocytes and sperm during in vitro fertilization (IVF). Oocytes were cocultured with sperm in IVF medium containing increasing concentrations of an organochlorine mixture, similar to that found in women of highly exposed populations. Exposure to the organochlorine mixture diminished oocyte penetration rates and polyspermy in a linear manner. The mixture did not affect rates of cleavage nor development to multicell embryos. However, rates of development to the blastocyst stage were lower at the highest concentration at which oocyte penetration was observed. The same experiment was performed using oocytes that were preexposed during in vitro maturation. This greater exposure to the mixture also reduced penetration in a dose-response manner and affected polyspermy. Frozen-thawed pig sperm were also cultured in IVF medium containing the same organochlorine concentrations. Sperm motility parameters were immediately reduced in a dose-dependent manner by the organochlorines, followed by diminished viability 2 h later. From these results, it appears that reduced sperm quality would account for decreases in fertilization, polyspermy, and blastocyst formation. These results suggest that exposing porcine oocytes and sperm to an environmentally pertinent organochlorine mixture in vitro disrupts the oocyte block to polyspermy, sperm fertility, and further embryonic development, and supports recent concerns that such pollutants harm reproductive health in humans and other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号