首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Lawler  P Ferro  M Duquette 《Biochemistry》1992,31(4):1173-1180
Thrombospondin is a 420,000-dalton adhesive glycoprotein that is composed of three subunits of equivalent molecular weight. When the cDNA for the complete coding region of the human endothelial cell thrombospondin subunit is expressed in mouse NIH 3T3 cells, a 420,000-dalton protein is synthesized and secreted. The expressed protein comigrates with human platelet thrombospondin both in the presence and in the absence of a reducing agent. The expressed protein binds to a monoclonal anti-thrombospondin antibody, heparin, and calcium. In addition to the 420,000-dalton protein, the transfected cell lines also express a variable amount of a 140,000-dalton polypeptide. When the culture supernatants that are produced by cells that are expressing thrombospondin are applied to heparin-Sepharose, the 420,000-dalton and the 140,000-dalton proteins are bound to the column and are eluted with buffer containing 0.55 and 0.3 M NaCl, respectively. The 140,000-dalton protein only binds to heparin-Sepharose in the presence of calcium. Deletion of the region of homology with procollagen results in defective assembly of the trimer. Deletion of the type 1 or type 2 repeats results in decreased stability of the subunit with the predominant polypeptides that are expressed having molecular weights of 127,000 and 130,000, respectively. These polypeptides retain low-affinity heparin-binding activity. High-affinity heparin binding is markedly diminished by mutations in either of two sequence motifs that include clusters of lysines and arginines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Structure of thrombospondin   总被引:8,自引:0,他引:8  
The NH2-terminal amino acid sequences of thrombospondin and of a 30,000-Da heparin-binding peptide derived from thrombospondin by treatment with plasmin are identical. The heparin-binding peptide is homogeneous in size but slightly heterogeneous in charge with the predominant isoelectric points being 6.1 and 5.7. Electron microscopy of tungsten replicas of thrombospondin reveals a tripartite structure resembling a "bola" which is about 60 nm across when fully extended. Each part of the molecule terminates in a globular node or head which disappears upon limited plasmin digestion, suggesting that the heparin-binding peptide is located in the head region. In addition to the heparin-binding peptide, a 20,000-Da peptide also apparently associated with the head region is liberated during proteolysis. The electron micrographs indicate that the legs of the bola-like structure must be folded into an extended, flexible, tertiary structure. These legs, each of about 65,000 Da, appear to be attached near the ends opposite the heads, probably by disulfide bonds. Each leg possesses a tab or protein (approximately 20,000 Da) which juts out from this attachment point.  相似文献   

3.
A synthetic DNA probe designed to detect coding sequences for platelet factor 4 and connective tissue-activating peptide III (two human platelet alpha-granule proteins) was used to identify several similar sequences in total human DNA. Sequence analysis of a corresponding 3,201-base-pair EcoRI fragment isolated from a human genomic library demonstrated the existence of a variant of platelet factor 4, designated PF4var1. The gene for PF4var1 consisted of three exons and two introns. Exon 1 coded for a 34-amino-acid hydrophobic leader sequence that had 70% sequence homology with the leader sequence for PF4 but, in contrast, contained a hydrophilic amino-terminal region with four arginine residues. Exon 2 coded for a 42-amino-acid segment that was 100% identical with the corresponding segment of the mature PF4 sequence containing the amino-terminal and disulfide-bonded core regions. Exon 3 coded for the 28-residue carboxy-terminal region corresponding to a domain specifying heparin-binding and cellular chemotaxis. However, PF4var1 had amino acid differences at three positions in the lysine-rich carboxy-terminal end that were all conserved among human, bovine, and rat PF4s. These differences should significantly affect the secondary structure and heparin-binding properties of the protein based on considerations of the bovine PF4 crystal structure. By comparing the PF4var1 genomic sequence with the known human cDNA and the rat genomic PF4-coding sequences, we identified potential genetic regulatory regions for PF4var1. Rat PF4 and human PF4var1 genes had identical 18-base sequences 5' to the promoter region. The intron positions appeared to correspond approximately to the boundaries of the protein functional domains.  相似文献   

4.
The glycoprotein thrombospondin is distributed between the extracellular matrix and the platelet-sequestered pool in the resting state and it undergoes redistribution upon platelet stimulation. It is believed to play a role in matrix structure and in coagulation. We have studied the structural domains of endothelial cell (EC) thrombospondin by use of the serine proteases thrombin, trypsin and chymotrypsin and have characterized the heparin-binding domains of this molecule. For this purpose we used purified thrombospondin synthesized and secreted by bovine aortic endothelial cells grown in the presence of radiolabeled methionine. We find that the susceptibility of EC thrombospondin to proteolysis is five-fold smaller than that of platelet thrombospondin. In the presence of 2 mM Ca ions the molecule is cleaved by 20 U/ml thrombin at a single locus, to yield fragments of 160 kDa and 35 kDa. Trypsin digestion for 5 min at room temperature at an enzyme-to-substrate ratio of 1:20 produces a stable fragment of 140 kDa but not the 30-kDa fragment observed in platelet thrombospondin. Chymotrypsin, under identical conditions to those used for trypsin, cleaves EC thrombospondin into four stable fragments of 160 kDa, 140 kDa, 27 kDa and 18 kDa. Chelation of Ca by EDTA increases susceptibility of the molecule to proteolysis. Under the conditions used a cryptic thrombin-cleavage site, not hitherto observed in platelet thrombospondin, was observed in EC thrombospondin. The location of this site is near a chymotrypsin-susceptible site, which has been observed in the long connecting arm, which is particularly Ca-stabilized. Heparin-binding capacity of EC thrombospondin was observed in at least two separate loci. Both thrombin and chymotrypsin produced small fragments (35 kDa and 27 kDa respectively) which bound to heparin with high affinity, and large fragments (160 kDa for thrombin and 140 kDa for chymotrypsin) which had low affinity. Chelation of Ca substantially decreased the low-affinity binding of the large fragments but not the high-affinity binding of the small fragments. Two-dimensional gel electrophoresis of the chymotryptic heparin-binding fragments shows that each molecule gave rise to a heterogeneous array of fragments of high molecular mass bound by disulfide bonds, indicating that there is a difference in the rate of cleavage between the three subunits of EC thrombospondin. Trypsin, despite its limited degradation, completely eliminated the heparin-binding capacity of both high and low-affinity loci, in contrast to platelet thrombospondin where the high affinity remains intact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We have used DNA bound to cellulose to isolate and translate in vitro herpes simplex virus type 1 (HSV-1) mRNA's encoded by HindIII fragment L (mapping between 0.592 and 0.647), and 8.450-base-pair (8.45-kb) portion of the long unique region of the viral genome. Readily detectable, late mRNA's 2.7 and 1.9 kb in size encoding 69,000- and 58,000-dalton polypeptides, respectively, were isolated. A very minor late mRNA family composed of two colinear forms, one 2.6 kb and one 2.8 kb, was isolated and found to encode only an 85,000-dalton polypeptide. A major early mRNA, 1.8 kb in size encoding a 64,000-dalton polypeptide, was also isolated. High-resolution mapping of these mRNA's by using S1 nuclease and exonuclease VII digestion of hybrids between them and 5' and 3' end-labeled DNA fragments from the region indicated that the major early mRNA contained no detectable splices, and about half of its 3' end was complementary to the 3' region of the very minor 2.6- to 2.8-kb mRNA's encoded on the opposite strand. These mRNA's also contained no detectable splices. The major late 2.7-kb mRNA was found to be a family made up of members with no detectable splices and members with variable-length (100 to 300 bases) segments spliced out very near (ca. 50 to 100 bases) the 5' end.  相似文献   

6.
Fibronectin was isolated from porcine plasma by affinity chromatography with gelatin-linked Sepharose 4B. Porcine fibronectin had a chemical composition similar to those of human and other fibronectins and reacted with antiserum raised against human fibronectin. It showed hemagglutination activity with trypsin-treated rabbit erythrocytes, though the activity was far less than that of human fibronectin. Porcine plasma fibronectin consisted of two subunit chains of about 230,000-daltons linked by disulfide bonds(s). Limited proteolysis of this protein with porcine liver cathepsin B yielded five major fragments which were investigated by affinity chromatography with gelatin- and heparin-linked Sepharose 4B. One fragment (Mr = 50,000) was bound to gelatin but not to heparin, while the remaining four were bound to heparin but not to gelatin, suggesting that plasma fibronectin takes a discrete domain structure with respect to interaction with these two macromolecules. The three larger heparin-binding fragments, Mr = 175,000, 150,000, and 130,000 were eluted with different concentrations of a mixture of NaCl and urea from the heparin-column, suggesting that they have different interactions with heparin, the 130,000-dalton fragment being the one with the strongest interaction. After reduction with 2-mercaptoethanol, the 175,000-dalton fragment was converted to the 150,000-dalton region fragment, which, together with the unchanged 150,000-dalton fragment, appeared to be equivalent in amount to the 130,000-dalton fragment. This finding suggests that the 150,000- and 130,000-dalton fragments may have originated from different subunit chains. Since the 175,000-dalton fragment was not produced by cathepsin B digestion of fibronectin which had been treated with plasmin, it was concluded that the 175,000-dalton fragment contained interchain disulfide bond(s) which had linked the native subunit chains. These results suggest that porcine plasma fibronectin has non-identical subunit chains composed of domains which differ in interaction with heparin and in susceptibility to cathepsin B.  相似文献   

7.
A panel of monoclonal antibodies (Mab's) has been raised against human platelet thrombospondin (TSP). One Mab, designated A2.5, inhibits the hemagglutinating activity of TSP and immunoprecipitates the NH2 terminal 25 kD heparin binding domain of TSP (Dixit, V.M., D. M. Haverstick, K. M. O'Rourke, S. W. Hennessy, G. A. Grant, S. A. Santoro, and W. A. Frazier, 1985, Biochemistry, in press). Another Mab, C6.7, blocks the thrombin-stimulated aggregation of live platelets and immunoprecipitates an 18-kD fragment distinct from the heparin binding domain (Dixit, V. M., D. M. Haverstick, K. M. O'Rourke, S. W. Hennessy, G. A. Grant, S. A. Santoro, and W. A. Frazier, 1985, Proc. Natl. Acad. Sci. 82: 3472-3476). To determine the relative locations of the epitopes for these Mabs in the three-dimensional structure of TSP, we have examined TSP-Mab complexes by electron microscopy of rotary-shadowed proteins. The TSP molecule is composed of three 180-kD subunits, each of which consists of a small globular domain (approximately 8 nm diam) and a larger globular domain (approximately 16 nm diam) connected by a thin, flexible strand. The subunit interaction site is on the thin connecting strands, nearer the small globular domains. Mab A2.5 binds to the cluster of three small domains, indicating that this region contains the heparin binding domain and thus represents the NH2 termini of the TSP peptide chains. Mab C6.7 binds to the large globular domains on the side opposite the point at which the connecting strand enters the domain, essentially the maximum possible distance from the A2.5 epitope. Using high sensitivity automated NH2 terminal sequencing of TSP chymotryptic peptides we have ordered these fragments within the TSP peptide chain and have confirmed that the epitope for C6.7 in fact lies near the extreme COOH terminus of the peptide chain. In combination with other data, we have been able to construct a map of the linear order of the identified domains of TSP that indicates that to a large extent, the domains are arranged co-linearly with the peptide chain.  相似文献   

8.
Most proteins of the extracellular matrix (ECM), such as the glycoproteins, collagens and proteoglycans, consist of many structurally autonomous domains that are often functionally distinct. Consequently these proteins are designated as mosaic proteins. Related domains are often found in several different ECM proteins. Domains which are of importance for assembly have been identified by fragmentation and other approaches. Triple-stranded coiled-coil domains in laminin and probably also in tenascin and thrombospondin are responsible for chain selection, a process which may be important for the formation of tissue specific isoforms. Globular domains at the C-terminus of collagenous domains are essential for the registration of the three chains and triple-helix formation. Fibrillar assemblies of these triple helices with constituent globular domains serve important assembly functions in many collagens including collagens IV and VI. Many other domains with more specialized functions in assembly have been identified in laminin, fibronectin and other ECM proteins. Cys-rich domains with either distant or close homology with epidermal growth factor are repeated manifold in rod-like regions of a number of ECM proteins including laminin, tenascin and thrombospondin. They may serve as spacer elements but as suggested for laminin some domains of this type may also function as signals for cellular growth and differentiation. Another important cellular function common to many ECM proteins is cell attachment. Several cell attachment sites have been localized in structurally unrelated domains of the same or of different ECM proteins.  相似文献   

9.
Native type III collagen and procollagen were prepared from fetal bovine skin. Examination of the cleavage products produced by digestion with tadpole collagenase demonstrated that the three palpha1(III) chains of type III procollagen were linked together by disulfide bonds occurring at both the amino-terminal and carboxy-terminal portions of the molecule. Type III collagen contained interchain disulfide bonds only in the carboxy-terminal region of the molecule. After digestion of procollagen with bacterial collagenase an amino-terminal, triple-stranded peptide fragment was isolated. The reduced and alkylated chain constituents of this fragment had molecular weights of about 21 000. After digestion of procollagen with cyanogen bromide a related triple-stranded fragment was isolated. The chains of the cyanogen bromide fragment had a molecular weight of about 27 000. When the collagenase-derived peptide was fully reduced and alkylated, it became susceptible to further digestion with bacterial collagenase. This treatment released a fragment of about 97 amino acid residues which contained 12 cystein residues and had an amino acid composition typical for globular proteins. A second, non-helical fragment of about 48 amino acid residues contained three cysteines. This latter fragment is formed from sequences that overlap the amino-terminal region in the collagen alpha1(III) chain by 20 amino acids and possesses an antigenic determinant specific for the alpha1(III) chain. The collagenase-sensitive region exposed by reduction comprised about 33 amino acid residues. It was recovered as a mixture of small peptides. These results indicate that the amino-terminal region of type III procollagen has the same type of structure as the homologous region of type I procollagen. It consists of a globular, a collagen-like and a non-helical domain. Interchain disulfide bonding and the occurrence of cysteines in the non-helical domain are, however, unique for type III procollagen.  相似文献   

10.
Primary structure of the heparin-binding site of type V collagen   总被引:2,自引:0,他引:2  
The abilities of collagens, type I, II, III, IV, and V, to bind heparin were examined by heparin-affinity chromatography and binding studies with [35S]heparin. At a physiological pH and ionic strength, only type V collagen bound to heparin. Collagens type I and II showed higher affinities than types III and IV for heparin, but did not bind to a heparin column at a physiological ionic strength. The heparin binding site of type V collagen was located in a 30 kDa CNBr fragment of the alpha 1(V) chain, and the amino acid sequence of this fragment was determined. The 30 kDa fragment contained a cluster of basic amino acid residues, and enzymatic cleavage within this basic domain greatly reduced the heparin-binding activities of the resulting peptides. Thus this basic region is probably the heparin-binding site of type V collagen.  相似文献   

11.
Thrombospondin induces the migration of human melanoma and carcinoma cells. Using a modified Boyden chamber assay, tumor cells migrated to a gradient of soluble thrombospondin (chemotaxis). Checkerboard analysis indicated that directional migration was induced 27-fold greater than stimulation of random motility. Tumor cells also migrated in a dose-dependent manner to a gradient of substratum-bound thrombospondin (haptotaxis). A series of human melanoma and carcinoma cells were compared for their relative motility stimulation by thrombospondin haptotaxis vs. chemotaxis. Some cell lines exhibited a stronger haptotactic response compared to their chemotactic response while other lines exhibited little or no migration response to thrombospondin. Human A2058 melanoma cells which exhibit a strong haptotactic and chemotactic response to thrombospondin were used to study the structural domains of thrombospondin required for the response. Monoclonal antibody C6.7, which binds to the COOH-terminal region of thrombospondin, inhibited haptotaxis in a dose-dependent optimal manner. C6.7 had no significant effect on thrombospondin chemotaxis. In contrast, monoclonal antibody A2.5, heparin, and fucoidan, which bind to the NH2-terminal heparin-binding domain of thrombospondin, inhibited thrombospondin chemotaxis but not haptotaxis. Monoclonal antibody A6.1 directed against the internal core region of thrombospondin had no significant effect on haptotaxis or chemotaxis. Synthetic peptides GRGDS (50 micrograms/ml), but not GRGES, blocked tumor cell haptotaxis on fibronectin, but had minimal effect on thrombospondin or laminin haptotaxis. The 140-kD fragment of thrombospondin lacking the heparin-binding amino-terminal region retained the property to fully mediate haptotaxis but not chemotaxis. When the COOH region of the 140-kD fragment, containing the C6.7-binding site, was cleaved off, the resulting 120-kD fragment (which retains the RGDA sequence) failed to induce haptotaxis. Separate structural domains of thrombospondin are therefore required for tumor cell haptotaxis vs. chemotaxis. This may have implications during hematogenous cancer metastases formation.  相似文献   

12.
Human platelet thrombospondin adsorbed on plastic promotes attachment and spreading of human G361 melanoma cells. Attachment is rapid, and spreading is maximal by 90 min with 60-90% of the attached cells spread. In contrast, thrombospondin promotes attachment but not spreading of human C32 melanoma cells, which attach and spread only on laminin substrates. The specificity of these interactions and the regions of the thrombospondin molecule involved in attachment and spreading were examined using proteolytic fragments of thrombospondin and by inhibition studies. The sulfated fucan, fucoidan, and monoclonal antibody A2.5, which is directed against the heparin-binding domain of thrombospondin, selectively inhibit spreading but only weakly inhibit attachment. Monoclonal antibodies against some other domains of thrombospondin, however, are potent inhibitors of attachment. The amino-terminal heparin-binding domain of thrombospondin does not promote attachment. Large fragments lacking the heparin-binding domain support attachment but not spreading of G361 cells. Attachment activity is lost following removal of the 18-kD carboxyl-terminal domain. These results suggest that at least two melanoma ligands are involved in cell attachment and spreading on thrombospondin. The carboxyl-terminal region and perhaps other regions of the molecule bind to receptor(s) on the melanoma surface that promote initial attachment but not cell spreading. Interaction of the heparin-binding domain with sulfated glycoconjugates on melanoma surface proteoglycans and/or sulfated glycolipids mediates spreading. Monoclonal antibodies A2.5 and C6.7 also reverse spreading of G361 cells growing on glass culture substrates, suggesting that binding to thrombospondin mediates attachment of these melanoma cells in culture.  相似文献   

13.
The HindII + III restriction enzyme fragmentation pattern of various lambda-phi80trp deoxyribonucleic acid molecules is presented. An analysis of deoxyribonucleic acid molecules carrying deletions ending within the trp regulatory elements and a deoxyribonucleic acid molecule carrying a deletion within trpE indicates that a fragment of 8.3 X 10(5) daltons contains at least part of the trp promoter, the entire trp leader region, and part of the trpE gene. The observation that ribonucleic acid polymerase, when present in the HindII + III digestion mixture, results in the fusion of this 8.3 X 10(5)-dalton fragment to the preceding bacterial fragment suggests that HindII + III cuts within trpP.  相似文献   

14.
The ultrastructure of embryonic chick cartilage proteoglycan core protein was investigated by electron microscopy of specimens prepared by low angle shadowing. The molecular images demonstrated a morphological substructural arrangement of three globular and two linear regions within each core protein. The internal globular region (G2) was separated from two terminally located globular regions (G1 and G3) by two elongated strands with lengths of 21 +/- 3 nm (E1) and 105 +/- 22 nm (E2). The two N-terminal globular regions, separated by the 21-nm segment, were consistently visualized in well spread molecules and showed little variation in the length of the linear segment connecting them. The E2 segment, however, was quite variable in length, and the C-terminal globular region (G3) was detected in only 53% of the molecules. The G1, G2, and G3 regions in chick core protein were 10.1 +/- 1.7 nm, 9.7 +/- 1.3 nm, and 8.3 +/- 1.3 nm in diameter, respectively. These results are similar to those described previously for proteoglycan core proteins isolated from rat chondrosarcoma, bovine nasal cartilage, and pig laryngeal cartilage (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). However, a significant difference was detected between the length of the elongated strand (E2) of core proteins isolated from chick cartilage, E2 length = 105 +/- 22 nm, compared to bovine nasal cartilage, E2 length = 260 +/- 39 nm. The epitope of the proteoglycan core protein-specific monoclonal antibody, S103L, was visualized by electron microscopy, and the distance from the core protein N terminus to the S103L binding site was measured. The S103L binding site was localized to the E2 region, 111 +/- 20 nm from the G1 (N terminus) domain and 34 nm from the G3 (C terminus) domain. cDNA clones selected from an expression vector library of chicken cartilage mRNA also show this epitope to be located near the C-terminal region (R. C. Krueger, T. A. Fields, J. Mensch, and B. Schwartz (1990) J. Biol. Chem. 265, 12088-12097).  相似文献   

15.
Band 3 is the predominant polypetide and the purported mediator of anion transport in the human erythrocyte membrane. Against a background of minor and apparently unrelated polypeptides of similar electrophoretic mobility, and despite apparent heterogeneity in its glycosylation, the bulk of band 3 exhibits uniform and characteristic behavior. This integral glycoprotein appears to exist as a noncovalent dimer of two ~ 93,000-dalton chains which span the membrane asymmetrically. The protein is hydrophobic in its composition and in its behaviour in aqueous solution and is best solubilized and purified in detergent. It can be cleaved while membrane-bound into large, topographically defined segments. An integral, outer-surface, 38,000-dalton fragment bears most of the band 3 carbohydrate. A 17,000-dalton, hydrophobic glycopeptide fragment spans the membrane. A ~ 40,000-dalton hydrophilic segment represents the cytoplasmic domain. In vitro, glyceraldehyde 3-P dehydrogenase and aldolase bind reversibly, in a metabolite-sensitive fashion, to this cytoplasmic segment. The cytoplasmic domain also bears the amino terminus of this polypetide, in contrast to other integral membrane proteins. Recent electron microscopic analysis suggests that the poles of the band 3 molecule can be seen by freezeetching at the two original membrane surfaces, while freeze-fracture reveals the transmembrane disposition of band 3 dimer particles. There is strong evidence that band 3 mediates 1:1 anion exchange across the membrane through a conformational cycle while remaining fixed and asymmetrical. Its cytoplasmic pole can be variously perturbed and even excised without a significant alteration of transport function. However, digestion of the outer-surface region leads to inhibition of transport, so that both this segment and the membrane-spanning piece (which is slectively labeled by covalent inhibitors of transport) may be presumed to be involved in transport. Genetic polymorphism has been observed in the structure and immunogenicity of the band 3 polypeptide but this feature has not been related to variation in anion transport or other band 3 activities.  相似文献   

16.
17.
This is the first in a series of studies that examines the renal tubular ultrastructure of elasmobranch fish. Each subdivision of the neck segment and proximal segment of the renal tubule of the little skate (Raja erinacea) has been investigated using electron microscopy of thin sections and freeze-fracture replicas. Flagellar cells, characterized by long, wavy, flagellar ribbons, were observed in both nephron segments. They were found predominantly in the first subdivision of the neck segment, which suggests that propulsion of the glomerular filtrate is a primary function of this part of the renal tubule. In the non-flagellar cells of the neck segment (subdivisions I and II), there were bundles of microfilaments, a few apical cell projections, and, in subdivision II, numerous autophagosomes. In the proximal segment, the non-flagellar cells varied in size, being low in subdivision I, cuboidal in II, tall columnar in III, and again low in IV. Apical cell projections were low and scattered in subdivisions I and IV and were highest in III where the basolateral plasma membrane was extremely amplified by cytoplasmic projections. Furthermore, in these cells the mitochondria were numerous with an extensive matrix and short cristae. A network of tubules of the endoplasmic reticulum characterized the apical region of the non-flagellar cells in subdivisions I, II, and IV. In the late part of subdivision II and the early part of III, the cells were characterized by numerous coated pits and vesicles, large subluminal vacuoles, and basally located dense bodies, all of which are structures involved in receptor-mediated endocytosis. Freeze-fracture replicas revealed gap junctions restricted to the cells of the first three subdivisions of the proximal segment. The zonulae occludentes were not different in the neck and proximal segments, being composed of several strands, suggesting a moderately leaky paracellular pathway.  相似文献   

18.
Binding of laminin to type IV collagen: a morphological study   总被引:18,自引:14,他引:4       下载免费PDF全文
A mixture of laminin and type IV collagen was analyzed by rotary shadowing using carbon/platinum and electron microscopy. Laminin was found to form distinct complexes with type IV collagen: one site of interaction is located 140 nm from the COOH-terminal, noncollagenous (NC1) domain and the other is located within the NH2-terminal region. The isolated NC1 fragment of type IV collagen does not appear to interact with laminin, while pepsin-treated type IV collagen, which lacks the NC1 domain, retains its ability to form complexes with laminin. Analysis of the laminin-type IV complexes indicates that laminin binds to type IV collagen via the globular regions of either of its four arms. This finding is supported by experiments using fragment P1 of laminin which lacks the globular regions and which does not bind to type IV collagen in a specific way. In addition, after heat-denaturation of laminin no specific binding is observed.  相似文献   

19.
The submicroscopic organization of the retinal rods of the rabbit has been studied with high resolution electron microscopy in thin longitudinal and cross-sections. The outer rod segment consists of a stack of flattened sacs or cisternae each of them limited by a thin homogeneous membrane of about 30 A. The membrane of the rod sacs is attached to the surface membrane and is also in continuity with short tubular stalks of about 100 to 150 A which apparently end in relation with the connecting cilium. The bundle of filaments that constitute the connection between the outer and the inner segments is described under the name of connecting cilium. This fibrous component has a structure that is very similar to that of the cilium. It shows 9 pairs of peripheral filaments of about 160 A in diameter, a matrix material, and a surface membrane. Very infrequently two central single filaments are observed. The connecting cilium has a typical basal body in the inner segment; its distal end penetrates the outer segment, where it establishes some structural relation to the rod sacs. The relationships and submicroscopic organization of the connecting cilium were studied in longitudinal and in cross-sections passing at different levels of the rod segments. The inner rod segment shows two distinct regions: a distal and a proximal one. The distal region, corresponding to the ellipsoid of classical histology is mainly composed of longitudinally packed mitochondria. It also contains the basal body of the cilium, vacuoles of the endoplasmic reticulum, dense particles, and intervening matrix with very fine filaments. In the proximal region of the inner segment the mitochondria are lacking and within the matrix it is possible to recognize elements of the Golgi complex, vacuoles of the endoplasmic reticulum, dense particles and numerous neuroprotofibrils of 160 to 200 A in diameter which collect and form a definite bundle at the exit of the rod fiber. The interpretation of the connecting fibers as a portion of a cilium and of the outer segment as a differentiation of the distal part of a primitive cilium are discussed. The importance of the continuity of the surface membranes of the outer segment, connecting cilium, and inner segment is emphasized and its possible physiological role is discussed.  相似文献   

20.
Calcium-replete thrombospondin has been purified from outdated platelets using heparin-Sepharose affinity chromatography, gelatin-Sepharose to remove fibronectin, and gel filtration to eliminate low-molecular-weight heparin-binding proteins. Edman degradation of six different preparations revealed the amino-terminal sequence of thrombospondin (TSP) to be Asn-Arg-Ile-Pro-Glu-Ser-Gly-Gly-Asp-Asn-Ser-Val-Phe-. This sequence was obtained in initial yields as high as 85%, indicating that no blocked chains are present. Cleavage of calcium-replete TSP with thermolysin or plasmin results in the production of relatively stable fragments. Chromatography of these digests on heparin-Sepharose followed by elution with 0.6 M NaCl affords purification of an Mr 25,000 fragment from the thermolysin digest and an Mr 35,000 fragment from the plasmin digest. The binding of these fragments to heparin-Sepharose does not require divalent metal ions. Neither fragment is disulfide-bonded to other fragments present in the digests. The heparin-binding domains from both digests have similar amino acid compositions and their tryptic peptide maps on high performance liquid chromatography are identical with the exception of one peptide unique to each fragment. Automated Edman degradation in a vapor-phase sequenator of the thermolytic heparin-binding domain electroeluted from sodium dodecyl sulfate-gels indicates that the heparin-binding domain resides at the amino terminus of the Mr 180,000 TSP peptide chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号