首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the identity of binding sites for thyrotropin (TSH) and thyroid stimulating antibodies (TSAbs) associated with Graves' disease, we constructed eight human TSH receptor/rat LH-CG receptor chimeras. Substitution of amino acid residues 8-165 of the TSH receptor with the corresponding LH-CG receptor segment (Mc1 + 2) results in a chimera which retains high affinity TSH binding and the cAMP response to TSH but loses both the cAMP response to Graves' IgG and Graves' IgG inhibition of TSH binding. Two of three IgGs from idiopathic myxedema patients which contain thyroid stimulation blocking antibodies (TSBAbs) still, however, react with this chimera. Chimeras which substitute residues 90-165 (Mc2) and 261-370 (Mc4) retain the ability to interact with TSH, Graves' IgG, and idiopathic myxedema IgG. The data thus suggest that residues 8-165 contain an epitope specific for TSAbs and that TSH receptor determinants important for the activities of TSAbs and TSH are not identical. Further, binding sites for TSBAbs in idiopathic myxedema may be different from receptor binding sites for both Graves' IgG TSAb as well as TSH and may be different in individual patients.  相似文献   

2.
Antimicrosomal antibodies are present in the sera of most patients with autoimmune thyroiditis, and Graves' disease. It has, in general, been difficult to separate antimicrosomal activity from that directed against the thyrotropin (TSH) receptor in Graves' IgG preparations. The "microsomal" antigen has been localized to the endoplasmic reticulum and microfollicular aspect of thyrocytes; its structure is however unknown. In an attempt to identify the thyroid microsomal antigen, we studied the interaction of Hashimoto's IgG with high microsomal antibody titre and negative for thyroglobulin with purified thyroid plasma and light microsomal membranes. We allowed Hashimoto's, Graves', and control IgGs to bind to protein blots of thyroid plasma membranes resolved on SDS-PAGE under non-reducing conditions. All seven Hashimoto's IgG at a concentration of 2 mg/ml interacted with an M approximately 197,000 polypeptide corresponding to the TSH holoreceptor. By contrast to Graves' IgG (which were positive at 1 mg/ml), however, this binding was not blocked by pretreatment of the protein blots with TSH. Normal IgGs showed no binding at concentrations of up to 2 mg/ml. Both Hashimoto's and Graves' IgG interacted with TSH-affinity column-purified receptor preparations. Two of the Hashimoto's IgGs induced adenylate cyclase activation in thyroid plasma membranes, three inhibited TSH-stimulated enzyme activation, and two were without effect. Two classes of autoantibodies, other than TSH receptor directed, were encountered; one class raised to antigens common to all seven patients and another class unique to individual patients, eg, Mr 210,000 and Mr 20,000 polypeptides. We propose that the TSH receptor has multiple epitopes (functional domains), and the one to which antimicrosomal antibody bind is likely to be spatially separated from that with which Graves' IgG and TSH interact. Differences in affinity or number of sites allows for the demonstration of Graves' IgG against a background of antimicrosomal antibody.  相似文献   

3.
Graves' IgG recognizes linear epitopes in the human thyrotropin receptor.   总被引:1,自引:0,他引:1  
Twenty-nine peptides covering the full extracellular domain of the human thyrotropin receptor have been synthesized and tested for reactivity with Graves' patients' and normal sera in ELISA. Two peptides, amino acids 331-350 and the second extracellular loop of the transmembrane segment, bound IgG-s from 5 and 4 of 10 Graves' disease patients' sera, respectively. Neither of these two peptides showed enhanced binding to normal IgG. There were no apparent differences between the Graves' disease and normal group with respect to the other 27 peptides. We conclude that peptide 331-350 and the second extracellular loop carry important linear epitopes which may contribute to the disease process in selected Graves' patients.  相似文献   

4.
5.
An antiserum raised against an alignment of amino acid-(32-56), termed TSHRP-1, in the extracellular domain of human thyrotropin (TSH) receptor was used to identify the TSH receptor-like substance in plasma of Graves' disease. The dilution curve of plasma TSHRP-1-like immunoreactivity was observed in a manner parallel to the standard synthetic peptide curve in radioimmunoassay, and its molecular weight estimated approximately 60 kDa. The amounts of TSHRP-1-like immunoreactivity were significantly higher in Graves' plasma than those in plasma of normal and hypothyroid patients due to Hashimoto's thyroiditis. The present results indicate that human peripheral blood possesses a soluble form of the extracellular domain of TSH receptor which may contribute to the pathophysiology of Graves' disease.  相似文献   

6.
There exists a consensus that hyperthyroid Graves' disease is caused by thyrotropin receptor (TSH-R) autoantibodies. To test the possibility that the TSH-R is the sole antigen for thyroid stimulating antibodies (TSAb), we compared bioactivities of Graves' IgGs between non-thyroid mammalian cells transfected with human TSH-R cDNA and the reference thyroid bioassay. A Graves' IgG with TSH-binding inhibitor immunoglobulin (TBII) activity (89%) markedly stimulated cAMP formation in both CHO-K1 cells transfected with TSH-R cDNA (340 microU/ml of TSH equivalent) and rat thyroid cells, FRTL-5, (410 microU/ml of TSH equivalent). In contrast, a TBII negative (-1.5%) IgG from another patient with Graves' disease showed a strong thyroid stimulating activity (87 microU/ml of TSH equivalent) when FRTL-5 cells were used for the assay. But no stimulating activity was observed in this IgG when CHO-K1 cells transfected with TSH-R cDNA were used, suggesting a possible existence of TSH-R non-mediated thyroid stimulating immunoglobulin in some cases of Graves' disease.  相似文献   

7.
Fat cell TSH receptor-related antibodies were detected by immunoprecipitation of 125I-TSH-receptor complexes and the nature of the antibodies was analyzed. To 125I-TSH prebound to Triton-solubilized receptors from guinea pig fat tissues, 50 micrograms of immunoglobulin G (IgG) was added and precipitation was effected by the addition of antihuman IgG. Immunoprecipitation values in 13 patients with Graves' disease were significantly (p less than 0.05) higher than those in 11 normal subjects. No significant increase in the values was seen in 8 patients with Hashimoto's disease. No correlation was observed between immunoprecipitation values and titers of antimicrosomal and antithyroglobulin antibodies. Neither was there any correlation between the values and TSH-binding inhibitor immunoglobulins (TBII) detected by the radioreceptor assay. The IgG fractions positive for the immunoprecipitation antibody were found to be poor human thyroid stimulators (HTS) relative to their TBII activities. And a highly significant correlation was observed between TBII and HTS activities among IgGs without detectable antibody by immunoprecipitation (r=0.907; p less than 0.005; n=7). These findings 1) demonstrate that immunoprecipitation assay using fat cell TSH receptor may detect TSH receptor-related antibodies different from TBII in patients with Graves' disease and 2) suggest the antibodies may recognize determinants on the receptor or its vicinity that do not participate in the binding of TSH or thyroid stimulating antibody, and may interfere with thyroidal response to these stimulators.  相似文献   

8.
The thyroid target Ag for disease-inducing autoantibodies in Graves' disease is the receptor for thyroid-stimulating hormone (TSH), but little is known about the molecular basis of this pathogenic Ab response. We describe the characteristics of two high- affinity mAbs developed from an experimental murine model of hyperthyroid Graves' disease that exhibit potent thyroid-stimulating activity. Nanogram concentrations of the IgG mAbs KSAb1 and KSAb2 and their Fab induce full stimulation of the TSH receptor that is matched by the ligand TSH and, thus, act as full agonists for the receptor. However, KSAb1 and KSAb2 display differential activities in their ability to block TSH-mediated stimulation of the receptor, indicating subtle differences in their biological properties. In displacement studies, IgG and Fabs of KSAb1 and KSAb2 compete with Graves' disease autoantibodies as well as thyroid-blocking Abs present in some hypothyroid patients, indicating a close relationship between these autoimmune determinants on the receptor. In passive transfer studies, single injections of microgram quantities of KSAb1 or KSAb2 IgG led to rapid elevation of serum thyroxine and a hyperthyroid state that was maintained for a number of days. The thyroid glands showed evidence of cell necrosis, but there was no accompanying mononuclear cell infiltrate. In studying their receptor activation pathways, both KSAb1 and KSAb2 provoked phosphorylation of the intracellular ERK1/2 pathway in primary thyrocytes, indicating that multiple signaling pathways may participate in the pathogenesis of Graves' disease. In summary, our findings emphasize the similarities of the experimental mouse model in reproducing the human disorder and provide improved means for characterizing the molecular basis of this pathogenic response.  相似文献   

9.
An 11-residue oligopeptide, P-195, was synthesized to match human thyrotropin (TSH) receptor structure from No. 333 to 343 of amino acid sequence. Preincubation of 5 Graves' IgGs with P-195 up to 10 micrograms resulted in dose-dependent reductions of thyroid stimulating antibody (TSAb) activity. [125I] labeled P-195 was found to bind Graves' IgG. The bound radioactivity correlated significantly with their TSAb activity (N = 25, r = 0.587, p less than 0.01). A peptide having a completely reverse sequence as P-195 did not show such biological activity. The peptide did not affect TSH and thyrotropin binding inhibitor immunoglobulin (TBII) on their receptor binding nor biological activities. P-195 was concluded to have a part of TSAb binding sites.  相似文献   

10.
To identify the site(s) on the thyrotropin (TSH) receptor that interacts with TSH or thyroid stimulating antibody (TSAb), we examined the effect of the synthetic TSH receptor peptide (termed N2 peptide, No. 35-50) on the cAMP accumulation induced by TSH or TSAb. Preincubation of bovine TSH with N2 peptide resulted in a significant and dose-dependent decrease in cAMP accumulation. This decrease was not observed when bovine TSH was preincubated with P1 peptide, which was used as a control (No. 398-417). In contrast, the N2 peptide did not affect TSAb activity in immunoglobulin fractions from three TSAb-positive patients with Graves' disease. P1 peptide also had no effect on TSAb activity. These results suggest that the N-terminal region of the TSH receptor is important for TSH action, and also that TSAb activity cannot be suppressed only by the application of the synthetic peptide corresponding to the N-terminal region.  相似文献   

11.
We encountered a patient who developed silent thyroiditis during the course of Graves' disease. The diagnosis of silent thyroiditis was made on the basis of a low thyroidal 131I uptake, no response to the thyrotropin releasing hormone (TRH) test, and subsequent hypothyroidism despite the presence of high titers of thyrotropin (TSH) receptor antibody (TRAb) and thyroid stimulating antibody (TSAb). The patient, in addition, had a discrepancy between serum TSH and thyroid hormone values. This was due to the presence of interfering substances that react to mouse IgG in the sera since serum TSH levels were decreased in a dose dependent manner by the addition of increasing amounts of mouse IgG to the sera. It should therefore be noted that silent thyroiditis can develop in patients with Graves' disease. Furthermore, clinicians should be aware that two-site immunoassay kits that use mouse monoclonal antibodies are subject to interference by some substances, possibly antibodies which react to mouse IgG.  相似文献   

12.
Residues 287 to 404 of the rat thyrotropin (TSH) receptor exhibit little homology to gonadotropin receptors. A large segment of this region, residues 303-382, has no determinants important for TSH to bind or elevate cAMP levels nor for the activity of thyroid-stimulating autoantibodies (TSAbs) from the sera of Graves' patients, i.e. deletions, substitutions, or mutations in this segment do not result in a loss of any of these activities in transfected Cos-7 cells. Critical residues for these activities do, however, flank both sides of this segment. Of particular interest, deletion or mutation of residues 299-301 and 387-395 results in a marked decrease in high affinity TSH binding but preserves the ability of a TSAb to increase cAMP levels. Tyrosine 385 is also of particular interest since its mutation to phenylalanine, alanine, threonine, or glutamine results in a receptor with a 20-fold decrease in the ability of TSH to bind or increase cAMP levels, but one whose TSAb activity is, once again, preserved. Because one activity is preserved, we can conclude that (a) the receptor must be fully integrated within the membrane of the cell without malfolding, (b) these sequences represent determinants involved in the high affinity TSH binding site, and (c) separate determinants exist for high affinity TSH binding and TSAb activity, consistent with the existence of autoantibodies in Graves' sera which inhibit TSH binding (TBIAbs) or which increase cAMP levels (TSAbs). Additionally, we show that a 16-mer peptide (residues 352-367), which reacts with the sera of greater than 80% of patients with Graves' disease, can induce the formation of antibodies to a peptide with no sequence homology, residues 377-397. This peptide flanks the region, residues 303-382, with no determinants important for TSH receptor binding or activity. As noted above, it contains residues involved in the high affinity TSH binding site but whose deletion or mutation has no effect on TSAb activity, i.e. residues which would appear to be required at an epitope important for TBIAb but not TSAb antibody activity.  相似文献   

13.
Thyrotropin (TSH) and IgG preparations from patients with Graves' disease increase inositol phosphate as well as cAMP formation in Cos-7 cells transfected with rat TSH receptor cDNA. Mutation of alanine 623 in the carboxyl end of the third cytoplasmic loop of the TSH receptor, to lysine or glutamic acid, results in the loss of TSH- and Graves' IgG-stimulated inositol phosphate formation but not in stimulated cAMP formation. There is no effect of the mutations on basal or P2-purinergic receptor-mediated inositol phosphate formation. The mutations do not affect transfection efficiency or the synthesis, processing, or membrane integration of the receptor, as evidenced by the unchanged amount and composition of the TSH receptor forms on Western blots of membranes from transfected cells. The mutations increase the affinity of the TSH receptor for [125I]TSH and decrease Bmax; however, cells with an equivalently decreased Bmax as a result of transfection with lower levels of wild type receptor do not lose either TSH-induced inositol phosphate formation or cAMP signaling activity. Thus, in addition to discriminating between ligand-induced phosphatidylinositol bisphosphate and cAMP signals, the mutation appears to cause an altered receptor conformation which affects ligand binding to its large extracellular domain.  相似文献   

14.
In order to study the structure and function relationships of the thyrotropin (TSH)-specific beta-subunit, we produced 11 synthetic overlapping peptides containing the entire 112-amino acid sequence of human beta TSH and tested them for activity in TSH radioreceptor assay using both human and porcine thyroid membranes. Synthetic peptides representing four regions of the beta-subunit demonstrated the ability to inhibit binding of 125I-bovine TSH to crude thyroid membranes. The peptide representing the -COOH terminus of the subunit (beta 101-112) possessed highest binding activity, inhibiting binding of labeled TSH with an EC50 of 80 microM. The remaining active peptides were: beta 71-85 (104 microM), beta 31-45 (186 microM), beta 41-55 (242 microM), and beta 1-15 (331 microM). Specificity of the binding activity was shown by the inability of the peptides representing the remainder of the subunit to inhibit binding of label and by the inability of any of the peptides to inhibit binding of 125I-epidermal growth factor to the same thyroid membranes. The low affinity of the peptides as compared with native hormone is in agreement with previous studies of synthetic alpha-subunit peptides and, further, suggests that the interaction of beta TSH with receptor is multifaceted, requiring cooperative binding of these sites for the observed high affinity of the whole hormone. These studies are in agreement with previous predictions of active regions by chemical modification but add two regions to the list, showing the utility of the synthetic peptide strategy in the study of peptide hormone structure-activity relationships.  相似文献   

15.
alpha-Hemolytic oral streptococci are known to possess a family of cell surface cross-reactive proteins termed Ag I/II, having a molecular mass of approximately 180 to 210 kDa. These proteins are implicated in bacterial adherence to various oral tissues, and we showed recently that the SR protein, an I/II Ag-related protein, from Streptococcus mutans OMZ 175 serogroup f possesses Ag mimicry with human IgG. In this study, regions of the SR protein encoding the cross-reactive epitope(s) were analyzed by expressing selected restriction fragments from the cloned sr gene. The three SR-derived polypeptides reacted in ELISA with anti-SR rabbit IgG, whereas only the two polypeptides located along the carboxyl-terminal two thirds of the SR protein reacted with anti-human IgG rabbit IgG. In order to locate more precisely the human IgG-cross-reactive region, we synthesized six peptides, on the basis of the recently determined complete nucleotide sequence of the sr gene. Among these peptides, peptide 2, corresponding to the alanine-rich repeating amino-terminal region, peptide 3, located in the three tandem proline-rich regions, and peptide 6, located near the cell wall-spanning region, were the most interesting in term of antigenicity and immunogenicity. Anti-peptide 2, 3, and 6 rabbit IgG reacted with free SR and with cell wall-associated SR. Peptide 1, located near the amino terminus, was poorly immunogenic. Peptides 4 and 5, located in the putative human IgG-cross-reactive region, were immunogenic; however, anti-peptide 4 rabbit IgG reacted only weakly with SR or human IgG, whereas anti-peptide 5 rabbit IgG reacted strongly with SR and human IgG, and peptide 5 was recognized by anti-SR and anti-human IgG rabbit IgG. These results confirm the cell surface accessibility of this epitope and its potential participation in eliciting, in rabbits, anti-SR IgG cross-reactive with human IgG.  相似文献   

16.
Autoantibodies to the thyrotropin (TSH) hormone receptor (TSH-R) are present in the sera of patients with thyroid autoimmune disease which are pathogenetic leading to hyperthyroidism of Graves' disease. Considerable interest has been focused on the cloning of the human TSH-R, which has until very recently, proven exceedingly difficult due to the very low receptor level expression on thyroid cells. We have used polymerase chain reaction and highly degenerate, inosine containing oligonucleotides derived from sequence alignments of the transmembrane regions 2 and 7 of a number of G-binding protein receptors including the lutropin/choriogonadotropin (LH/CG) receptors to amplify various cDNAs from human thyroid cDNA. Sequencing analysis of 27 different clones revealed that they fall into eight different groups. The very recent publication of the complete nucleotide sequence of the human TSH-R revealed that one of the groups (GT1) containing seven clones which had been sequenced belong to the human TSH-receptor. The sequence of all 7 GT1 clones was identical and in complete concordance with transmembrane regions 2 and 7 of the published TSH-R sequence. Our results show that by designing oligonucleotides to common transmembrane regions of G-binding proteins where the primers are biased in their sequence to the LH/CG receptors it is possible to amplify the TSH-R receptor sequence.  相似文献   

17.
Graves' disease is characterized by hypersecretion of thyroid hormones due to binding of autoantibodies to the thyrotropin receptor (TSHR). In order to study immunological aspects of the TSHR we expressed the extracellular domain of the rat TSHR (ETSHR) as a fusion protein with beta-galactosidase in a prokaryotic system. The identity of this ETSHR-fusion protein was confirmed by Western blot, using antibodies to synthetic peptides derived from TSHR. Patients' sera reacted to a significantly greater extent with the affinity purified ETSHR relative to control sera. Similarly, sera from patients with Graves' disease displayed significant reactivity with only one of five peptides, RH2 (residues 352-366), when compared with normal sera. These data, together with the predicted hydrophilicity of the peptide RH2, suggest that amino acids 352-366 which lie within one of the unique regions of the extracellular domain of the TSHR may be important for antibody binding.  相似文献   

18.
Previously we reported the augmentative effect of nonionic hydrophilic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA) and dextran on thyroid-stimulating antibody (TSAb) activity in porcine thyroid cell assays. We examined whether a similar phenomenon occurs in FRTL-5 thyroid cells and CHO cells expressing the human (h) TSH receptor (CHO-hTSHR cells). As with porcine thyroid cells, PEG 22.5% precipitated crude IgG from serum of patients with Graves' disease, significantly increased cAMP production as compared with PEG 12.5% precipitated crude IgG in both FRTL-5 cells and CHO-hTSHR cells. PEG 5% augmented purified-TSAb-IgG-stimulated cAMP production in both cell assays. TSAb activities and positivity by the direct assay using whole serum (0.05 ml) in the presence of 5% PEG in untreated Graves' patients were significantly increased as compared with the absence of 5% PEG. The augmentative effects of PVA 10% or dextran T-70 10% on TSAb-IgG-stimulated cAMP production were also observed in both cell assays. PVA 10% did not augment TSH-stimulated cAMP production in spite of weak augmentation by dextran 10% in both cell assays. Lack of the augmentative effects of PEG 5%, PVA 10% and dextran 10% on cAMP produced by GTPgammaS, forskolin and pituitary adenylate cyclase activating polypeptide was observed in both cell assays. The augmentative effects of these polymers in both cell assays similar to porcine thyroid cells suggest that there is no apparent species specificity among human, porcine and rat thyroid cells as far as TSH receptor linked cAMP production in cell membranes existed.  相似文献   

19.
To investigate the pathophysiology of patients with autoimmune thyroid diseases, we measured serum thyroid stimulating antibody (TSAb) activity and thyroid stimulation blocking antibody (TSBAb) activity by determining the radioiodine (125I) uptake into FRTL-5 cells. FRTL-5 cells were pre-incubated for seven days with 5H medium and then incubated for 48 hours with patients' crude IgG prepared by polyethylene glycol precipitation. In order to measure TSBAb, 10 microU/ml TSH was also added. 125I was added one hour before the end of the 48 hour incubation period. After the incubation, the medium was aspirated, and the radioactivity in the cells was counted. In patients with untreated hyperthyroid Graves' disease, TSAb was detectable in 18 of 20 patients, the detectability being 90%, and activity showed a statistically significant positive correlation with TSAb activity determined by c-AMP accumulation. Out of 41 patients with hypothyroidism, TSBAb determined by 125I uptake was positive in six cases, the detectability being 14.6%. The inhibition of 125I uptake by one of these six IgGs was suggested to be at the TSH receptor level because it inhibited TSH induced c-AMP accumulation and showed positive thyrotropin binding inhibitor immunoglobulin (TBI I) activity, but did not inhibit the forskolin- and (Bu)2cAMP-induced 125I uptake. Inhibition of another IgG was suggested at the post-receptor level because it did not inhibit TSH induced cAMP accumulation and showed negative TBI I activity, but inhibited forskolin- and (Bu)2cAMP-induced 125I uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The linear antigenic epitopes of the Epstein-Barr virus replication activator protein (ZEBRA), recognised by specific serum IgG in nasopharyngeal carcinoma (NPC), were determined. This was achieved by synthesizing the entire amino acid sequence of ZEBRA as a set of 29, 22-residue peptides with an overlap of 14 amino acids. The ZEBRA peptides were tested in enzyme-linked immunosorbent assay (ELISA) for IgG binding in sera from 37 selected NPC patients who had IgG antibodies to the native ZEBRA protein. The most immunogenic epitope was peptide 1 at the amino-terminal end with 36 of the sera reactive against it. Further analysis of peptide 1, using the multipin peptide-scanning technique, defined a 10-amino-acid sequence FTPDPYQVPF, which was strongly bound by IgG. Two other regions of ZEBRA were also identified as immunodominant IgG epitopes, namely peptide 11 (amino acids 82–103) and peptide 19/20 (amino acids 146–175) with 8–13 of the NPC sera reactive against the peptides. The number of peptides reactive with individual NPC serum varies from 1 to 6 or more and there is some correlation between a greater number of peptide (at least 4) bound and a higher (at least 1:40) titre of serum IgA to viral capsid antigen. The immunodominant ZEBRA peptide 1 could be utilised in IgG ELISA for the detection of NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号