首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific binding of IgG to jejunal brush borders was greatest at acidic pH, at neutral pH no specific binding occurred. Specific binding declined with age-no specific binding occurred in borders from 20-and 24-day-old animals. There was no specific binding of IgG to borders from ileal enterocytes. Human transferrin and bovine serum albumin did not bind specifically to borders. The affinity of binding (-Ka) and the receptors site numbers per border estimated for rat IgG were 18.64 X 10(6) M-1 to 3.53 X 10(6) sites; for human IgG, 25.06 X 10(6) M-1 to 3.30 X 10(6) sites; for bovine IgG, 10.48 X 10(6) M-1 to 2.11 X 10(6) sites and for sheep IgG, 7.26 X 10(6) M-1 to 2.34 X 10(6) sites.  相似文献   

2.
A cytochrome c haem ligand, methionine-80, was photo-oxidized to methionine sulphoxide and the subsequent changes in redox properties and ligand binding were monitored kinetically. Isoelectric focusing of the product showed the presence of a single oxidized species, capable of binding CO when reduced. The binding of CO to the reduced protein was followed in stopped-flow experiments, which revealed the presence of two binding processes, at neutral pH, with rate constants of K+1 = 3.4 X 10(3)M-1-S-1 and k+2 = 5.80 X 10(2)M-1-S-1. When CO was photolytically dissociated from the reduced protein two recombination processes were observed with rates almost identical with those observed in the stopped-flow experiments (k+1 = 3.3 X 10(3)M-1-S-1 and k+2 = 6.0 X 10(2)M-1-S-1). These findings provide evidence of two reduced forms of the protein. The reduction of [methionine sulphoxide]cytochrome c by Cr2+ at neutral pH in stopped-flow experiments showed the presence of a single second-order reduction process (k = 7.2 X 10(3)M-1-S-1, activation energy = 44kJ/mol) and one first-order process. This protein was compared with some other chemically modified cytochromes.  相似文献   

3.
A Ca2+-sensitive electrode was used for determination of the binding strength of Ca2+ to bovine alpha-lactalbumin in 60 mM Tris buffer (pH 7.8-8.5) in the presence of various concentrations of NaCl. The dependence of the apparent binding constant on the concentration of NaCl was consistent with competitive binding of Ca2+ and Na+, and the binding constants of Ca2+ and Na+ were found to be 2.2 (+/- 0.5) X 10(7) M-1 and 99 (+/- 33) M-1, respectively, at 37 degrees C and pH 8.0. The temperature dependence of the binding constant of Ca2+ was examined between 30 and 45 degrees C; extrapolation of the dependence led to a binding constant of approximately 1 X 10(8) M-1 at pH 8.4 and 25 degrees C. The electrostatic contribution and conformational effect of the protein were also taken into consideration, and the intrinsic binding constant of Ca2+ to native alpha-lactalbumin was calculated to be (1.2-1.5) X 10(10) M-1 at 37 degrees C and pH 8.0.  相似文献   

4.
The effect of temperature on the binding of thyroxine and triiodothyronine to thyroxine-binding globulin has been studied by equilibrium dialysis. Inclusion of ovalbumin in the dialysis mixture stabilized thyroxine-binding globulin against losses in binding activity which had been found to occur during equilibrium dialysis. Ovalbumin by itself bound the thyroid hormones very weakly and its binding could be neglected when analyzing the experimental results. At pH 7.4 and 37 degrees in 0.06 M potassium phosphate/0.7 mM EDTA buffer, thyroxine was bound to thyroxine-binding globulin at a single binding site with apparent association constants: at 5 degrees, K = 4.73 +/- 0.38 X 10(10) M-1; at 25 degrees, K = 1.55 +/- 0.17 X 10(10) M-1; and at 37 degrees, K = 9.08 +/- 0.62 X 10(9) M-1. Scatchard plots of the binding data for triiodothyronine indicated that the binding of this compound to thyroxine-binding globulin was more complex than that found for thyroxine. The data for triiodothyronine binding could be fitted by asuming the existence of two different classes of binding sites. At 5 degrees and pH 7.4 nonlinear regression analysis of the data yielded the values n1 = 1.04 +/- 0.10, K1 = 3.35 +/- 0.63 X 10(9) M-1 and n2 = 1.40 +/- 0.08, K2 = 0.69 +/- 0.20 X 10(8) M-1. At 25 degrees, the values for the binding constants were n1 = 1.04 +/- 0.38, K1 = 6.5 +/- 2.8 X 10(8) M-1 and n2 = 0.77 +/- 0.22, K2 = 0.43 +/- 0.62 X 10(8) M-1. At 37 degrees where less curvature was observed, the estimated binding constants were n1 = 1.02 +/- 0.06, K1 = 4.32 +/- 0.59 X 10(8) M-1 and n2K2 = 0.056 +/- 0.012 X 10(8) M-1. When n1 was fixed at 1, the resulting values obtained for the other three binding constants were at 25 degrees, K1 = 6.12 +/- 0.35 X 10(8) M-1, n2 = 0.72 +/- 0.18, K2 = 0.73 +/- 0.36 X 10(8) M-1; and at 37 degrees K1 = 3.80 +/- 0.22 X 10(8) M-1, n2 = 0.44 +/- 0.22, and K2 = 0.43 +/- 0.38 X 10(8) M-1. The thermodynamic values for thyroxine binding to thyroxine-binding globulin at 37 degrees and pH 7.4 were deltaG0 = -14.1 kcal/mole, deltaH0 = -8.96 kcal/mole, and deltaS0 = +16.7 cal degree-1 mole-1. For triiodothyronine at 37 degrees, the thermodynamic values for binding at the primary binding site were deltaG0 = -12.3 kcal/mole, deltaH0 = -11.9 kcal/mole, and deltaS0 = +1.4 cal degree-1 mole-1. Measurement of the pH dependence of binding indicated that both thyroxine and triiodothyronine were bound maximally in the region of physiological pH, pH 6.8 to 7.7.  相似文献   

5.
Kinetic parameters of the interaction of the toxic lectins abrin and ricin with human erythrocytes and HeLa cells have been measured. The binding of 125I-labeled abrin and ricin to human erythrocytes and to HeLa cells at 37 degrees was maximal around pH 7, whereas at 0 degrees the binding was similar over a broad pH range. The binding occurred at similar rates at 0 degrees and 37 degrees with rate constants in the range 0.9 to 3.0 X 10(5) M-1 s-1. The dissociation was strongly temperature-dependent with rate constants in the range 3.4 to 45 X 10(-4) s-1 at 0 degrees and 3.9 to 18 X 10(-3) s-1 at 37 degrees. The presence of unlabeled lectins as well as lactose increased the rate of dissociation. The association constants measured at equilibrium or calculated from the rate constants were between 0.64 X 10(8) M-1 and 8.2 X 10(8) M-1 for abrus lectins, and between 8.0 X 10(6) M-1 and 4.2 X 10(8) M-1 for ricinus lectins. The association constants for the toxins were lower at 37 degrees than at 0 degrees. Isolated ricin B chain appeared to bind with similar affinity as intact ricin. The number of binding sites was estimated to be 2 to 3 X 10(6) per erythrocyte and 1 to 3 X 10(7) per HeLa cell. The binding sites of HeLa cells all displayed a uniform affinity towards abrin and ricin, both at 0 degrees and at 37 degrees. The same was the case with the binding sites of erythrocytes at 0 degrees. However, the data indicated that at 20 degrees erythrocytes possessed binding sites with two different affinities. Only a fraction of the cell-bound toxin appeared to be irreversibly bound and could not be removed by washing with 0.1 M lactose. The fraction of the total amount of bound toxin which became irreversibly bound to HeLa cells was for both toxins about 2 X 10(-3)/min at 37 degrees, whereas no toxin was irreversibly bound at 0 degrees. In the case of erythrocytes no toxin became irreversibly bound, either at 0 degrees or 37 degrees, indicating that the toxins are unable to penetrate into these cells.  相似文献   

6.
The binding of the ligands Mn2+, Ca2+, and methyl alpha-D-glucopyranoside to concanavalin A, purified as described (A.J. Sophianopoulos and J.A. Sophianopoulos (1981) Prep. Biochem. 11, 413-435), was studied by ultrafiltration in 0.2 M NaCl, pH 5.2 and pH 6.5 to 7, and at 23 to 25 degrees C. The association constant (Ka) of methyl alpha-D-glucopyranoside to concanavalin A was (2 +/- 0.2) X 10(3) M-1, both at pH 5.2 and 7. At pH 5.2 and in the absence of Ca2+, the Ka of Mn2+ to concanavalin A was (5 +/- 1) X 10(3) M-1, and in the presence of 1 mM Ca2+, the Ka was (9.1 +/- 2.1) X 10(5) M-1. At pH 6.5 Mn2+ bound to concanavalin A with a Ka of (7.3 +/- 1.8) X 10(5) M-1, and the binding affinity was virtually independent of the presence of Ca2+. Experiments of binding of 4-methylumbelliferyl alpha-D-mannopyranoside to concanavalin A indicated that at pH 5.2, binding of a single Mn2+ per concanavalin A monomer was sufficient to induce a fully active saccharide binding site. Ca2+ is not necessary for such activation, but rather it increases the affinity of concanavalin A for binding Mn2+.  相似文献   

7.
D Y Cai  M Tien 《Biochemistry》1990,29(8):2085-2091
The oxycomplexes (compound III, oxyperoxidase) of two lignin peroxidase isozymes, H1 (pI = 4.7) and H8 (pI = 3.5), were characterized in the present study. After generation of the ferroperoxidase by photochemical reduction with deazoflavin in the presence of EDTA, the oxycomplex is formed by mixing ferroperoxidase with O2. The oxycomplex of isozyme H8 is very stable, with an autoxidation rate at 25 degrees C too slow to measure at pH 3.5 or 7.0. In contrast, the oxycomplex of isozyme H1 has a half-life of 52 min at pH 4.5 and 29 min at pH 7.5 at 25 degrees C. The decay of isozyme H1 oxycomplex follows a single exponential. The half-lives of lignin peroxidase oxycomplexes are much longer than those observed with other peroxidases. The binding of O2 to ferroperoxidase to form the oxycomplex was studied by stopped-flow methods. At 20 degrees C, the second-order rate constants for O2 binding are 2.3 X 10(5) and 8.9 X 10(5) M-1 s-1 for isozyme H1 and 6.2 X 10(4) and 3.5 X 10(5) M-1 s-1 for isozyme H8 at pH 3.6 and pH 6.8, respectively. The dissociation rate constants for the oxycomplex of isozyme H1 (3.8 Z 10(-3) s-1) and isozyme H8 (1.0 X 10(-3) s-1) were measured at pH 3.6 by CO trapping. Thus, the equilibrium constants (K, calculated from kon/koff) for both isozymes H1 (7.0 X 10(7) M-1) and H8 (6.2 X 10(7) M-1) are higher than that of myoglobin (1.9 Z 10(6) M-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To improve our understanding of the physiological roles of parvalbumins, PA-1 (pI 4.78) and PA-2 (pI 4.97) parvalbumins were prepared from bullfrog skeletal muscle and their calcium binding properties were examined in a medium of constant ionic strength (I = 0.106, pH 6.80, at 20 degrees C) containing various concentrations of Mg2+ by using a metallo-indicator, tetramethylmurexide. Apparent binding constants for Ca2+ in the presence of Mg2+ changed in the manner expected if Ca2+ and Mg2+ compete for two independent homogeneous binding sites. The following values were obtained: for PA-1, KCa = 1 X 10(7) M-1, KMg = 900 M-1; for PA-2, KCa = 6 X 10(6) M-1, KMg = 830 M-1 (I = 0.106, pH 6.80, at 20 degrees C). The apparent binding constants are strongly dependent on temperature: at 10 degrees C for PA-1, KCa = 2 X 10(8) M-1, KMg = 10(4) M-1; for PA-2, KCa = 5 X 10(7) M-1, KMg = 5 X 10(3) M-1 (I = 0.106, pH 6.80). The dependence of the affinities for Ca2+ on ionic strength is similar to or less than that of GEDTA (EGTA). The affinities for Ca2+ and Mg2+ of parvalbumins are unchanged between pH 6.5 and 7.2.  相似文献   

9.
The CaATPase of skeletal muscle sarcoplasmic reticulum was specifically labeled in the ATP binding site with fluorescein isothiocyanate under gentle conditions (pH 7 X 5). Fluorescence energy transfer from the attached fluorescein to Nd3+ indicated that a cation binding site was about 1 X 0 nm away from the fluorescein. Thus it appears that the ATP site includes a cation binding site. At 25 degrees C in 0 X 5 M KCl, the association constants for Nd3+, Ca2+ and Mg2+ were 3 X 3 X 10(5) M-1, 84 M-1 and 35 M-1, respectively, making it possible that, in vivo, the site binds Mg2+.  相似文献   

10.
The binding of the charged form of two local anesthetics, dibucaine and etidocaine, to bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was measured simultaneously with ultraviolet spectroscopy and deuterium magnetic resonance. Because of their amphiphilic molecular structure, both drugs intercalate between the lipid molecules, increasing the surface area and imparting a positive electric charge onto the membrane. The ultraviolet (UV) binding isotherms were therefore analyzed in terms of a model which specifically took into account the bilayer expansion as well as the charge-induced concentration variations near the membrane surface. By formulating a quantitative expression for the change in surface area upon drug intercalation and combining it with the Gouy-Chapman theory, the binding of charged dibucaine and etidocaine to the lipid membrane was best described by a partition equilibrium, with surface partition coefficients of 660 +/- 80 M-1 and 11 +/- 2 M-1 for dibucaine and etidocaine, respectively (pH 5.5, 0.1 M NaCl/50 mM buffer). Deuterium magnetic resonance demonstrated further that the binding of drug changed the head-group conformation of the lipid molecules. Invoking the intercalation model, a linear variation of the deuterium quadrupole splittings of the choline segments with the surface charge density was observed, suggesting that the phosphocholine head-group may act as a 'molecular electrometer' with respect to surface charges.  相似文献   

11.
Two rabbits (TG-1, TG-2) were immunized with human thyroglobulin (HTg) and bled serially. Antisera were obtained at different times after the first immunization and kept separately and studied. In both rabbits production of anti-HTg, and anti-thyroid hormone antibodies such as anti-thyroxine (T4) and anti-triiodothyronine (T3) antibodies was observed. Binding parameters of anti-HTg antibodies with HTg, T4, and T3 were calculated in two selected antisera (70-day and 249-day). The Scatchard's plots of these antibodies were all curve-linear and were analyzed in two components: one, higher binding constant (Ka1) and smaller binding capacity (Cap1) and the other, lower binding constant (Ka2) and larger binding capacity (Cap2). Ka1 values of anti-HTg, anti-T4, and anti-T3 antibodies in sera from TG-1 obtained from 70-day and 249-day bleeding were 1.1 X 10(10) M-1, 6.0 X 10(9) M-1. 7.9 X 10(8) M-1 and 1.7 X 10(10) M-1, 6.5 X 10(9) M-1, 1.0 X 10(9) M-1, respectively. Those from TG-2 were 1.7 X 10(10) M-1, 1.8 X 10(9) M-1, 6.4 X 10(8) M-1 and 2.0 X 10(10) M-1, 3.1 X 10(9) M-1, 1.6 X 10(9) M-1, respectively. The significance of the production of anti-HTg and anti-thyroid hormone antibodies in rabbits immunized with HTg in relation to the antigenic structure of HTg molecule was discussed.  相似文献   

12.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

13.
The binding of 5'AMP, 5'GMP, 5'CMP, 3'CMP and Cl6RMP to RNAase A was studied by means of the gel filtration technique. It was found that only one molecule of 3'CMP binds strongly to the enzyme although a very unspecific binding is also present. The interaction of 5'AMP and 5'GMP with the enzyme shows one strong binding site and several weak binding sites, whereas two molecules of 5'CMP bind to RNAase A with equal strength. Cl6RMP shows an anomalous behaviour as both split peaks and troughs are found in the chromatogram. The Ka values for 3'CMP and the strong binding site of 5'AMP and 5'GMP are very similar whereas that for the two binding sites of 5'CMP is smaller (about 2.2 X 10(-4)M-1 and 0.5 X 10(-4)M-1, respectively at pH 5.5, I = 0.01 and 25 degrees C). The results are in general agreement with the known multiplicity of ligand-binding subsites in RNAase A.  相似文献   

14.
Static measurements of the reaction of ligand binding were done by conventional spectrophotometry. The ligand-binding reactions with nitrated cytochrome c were performed with imidazole, iminazole, CO and NO. The stoicheiometry was found to be 1:1, and the stability constants for the complexes formed between the nitrated cytochrome c and the ligands are: 2.58 X 10(4) M-1 (imidazole); 1.01 X 10(2) M-1 (iminazole); 3.6 X 10(4) M-1 (CO); 2.74 X 10(4) M-1 (NO). It was found that the electrometric potentials at pH 7.0 and 25degreesC of [aminotyrosyl]cytochrome c are E'o form II = 0.115 V and E'o form I = 0.260 V, where forms I and II are two species of protein co-existing in the protein solution. The isoelectric point for the oxidized form of [nitrotyrosyl]cytochrome c was 10.05, at 4degreesC.  相似文献   

15.
The binding equilibrium of deuteroporphyrin IX to human serum albumin and to bovine serum albumin was studied, by monitoring protein-induced changes in the porphyrin fluorescence and taking into consideration the self-aggregation of the porphyrin. To have control over the latter, the range of porphyrin concentrations was chosen to maker dimers (non-covalent) the dominant aggregate. Each protein was found to have one high-affinity site for deuteroporphyrin IX monomers, the magnitudes of the equilibrium binding constants (25 degrees C, neutral pH, phosphate-buffered saline) being 4.5 (+/- 1.5) X 10(7) M-1 and 1.7 (+/- 0.2) X 10(6) M-1 for human serum albumin and for bovine serum albumin respectively. Deuteroporphyrin IX dimers were found to bind directly to the protein, each protein binding one dimer, with high affinity. Two models are proposed for the protein-binding of porphyrin monomers and dimers in a porphyrin system having both species: a competitive model, where each protein molecule has only one binding site, which can be occupied by either a monomer or a dimer; a non-competitive model, where each protein molecule has two binding sites, one for monomers and one for dimers. On testing the fit of the data to the models, an argument can be made to favour the non-competitive model, the equilibrium binding constants of the dimers, for the non-competitive model (25 degrees C, neutral pH, phosphate-buffered saline), being: 8.0 (+/- 1.8) X 10(8) M-1 and 1.2 (+/- 0.6) X 10(7) M-1 for human serum albumin and bovine serum albumin respectively.  相似文献   

16.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

17.
Three vinyl monomers, M-1, M-3, and M-5, in which L-phenylalanine p-nitroanilide was acylated with CH2==CHCONH(CH2)nCO--(n = 1, 3, 5) were synthesized. They were co-polymerized with a large excess of acrylamide (co-polymers PAm-1, PAm-3, and PAm-5) and with a large excess of acrylic acid (co-polymers PAc=1, PAc-3, and PCc-5). In addition, M-5 was co-polymerized with acrylamide containing 2.8 mol % of the hydrophobic monomer N-acrylyl-1-naphthylamine (co-polymer PAm-5N). The rates of the chymotrypsin-catalyzed hydrolysis of the nitroanilide groups of M-5 and the various co-polymers were determined over a range of pH. For some of the systems data were also obtained over a range of substrate concentrations to derive values for Vmax and Km. Results obtained with PAm-5 were found to be independent of the chain length of the co-polymer. At pH 7, 25 degrees and with 2.7 X 10(-6) M enzyme, Vmax values for M-5, PAm-k, PAm-5N, and PAc-5 were 5.5, 5.5, 10, and 3.6 X 10(-8) M/S, while Km values were 8.5, 16.5, 10, and 2.2 X 10(-5),respectively, With PAc-5, the pH activity profile was shifted to higher acidities as compared to the profiles obtained with M-5 and PAm-5. The susceptibility of the co-polymers to chymotrypsin attack decreases sharply with a decreasing spacing of the L-phenylalanine p-nitroanilide residue from the backbone of the polymer chains.  相似文献   

18.
The nature of the binding of specific saccharides to Abrus precatorius agglutinin (APA) was studied by ultraviolet difference spectroscopy. Upon binding of saccharides, APA displayed difference spectra with maxima at 291-292 nm and 284-285 nm. Such spectra suggest that the state of the tryptophan residue closely associated with the saccharide-binding activity of APA is perturbed by the binding of a saccharide. The difference spectra value (delta epsilon) increased with increasing saccharide concentration. From the increase in delta epsilon at 291-292 nm, the association constant (Ka) was obtained for the binding of individual saccharides to APA. Lactose bound to APA with the highest affinity among the saccharides examined and its Ka value (8.3 X 10(3) M-1 at pH 7.0 and 25 degrees C) was approximately four times as large as that of galactose (2.2 X 10(3) M-1). Raffinose and methyl beta-galactopyranoside showed larger association constants than galactose. Galactosamine, N-acetylgalactosamine and 2-deoxy galactose were found to bind with APA with fairly low affinity. The shape of the lactose-induced difference spectrum changed with pH and the spectrum in the acidic region showed characteristic broadening of the difference maximum peaks. The affinity of lactose to APA was nearly equal in the range of pH 6-8, but decreased outside this pH region and with increasing temperature.  相似文献   

19.
The kinetics of the interaction of tRNASer and seryl-tRNA synthetase from yeast as well as of tRNATyr and tyrosyl-tRNA synthetase from Escherichia coli have been investigated by temperature-jump experiments. It could be shown that complex formation proceeds in two distinct steps. This was demonstrated for both the first and the second binding site. The two-step mechanism was deduced from the characteristic concentration dependence of the relaxation times. Seryl-tRNA synthetase recombines with the first tRNA to form an intermediate complex (kI12, kI21), which is transformed in a fast reaction to the final 1:1 complex (kI23, kI32). At pH 7.2 with 0.1 M KCl the rate constants are: kI12 = 2.7 X 10(8) M-1 S-1; kI23, kI32). At pH 7.2 with 0.1 M KCl the rate constants are: kI12 = 2.7 x 10(8) M-1 S-1; kI21 = 220 S-1; kI23 = 760 S-1; kI32 = 330 S-1. The 1:1 complex can bind a second tRNA. At pH 7.2 without added salt the rate constants are: KII2 = 0.9 X 10(8) M-1 S-1; kII21 = 270 S-1; kII23 = 120 S-1; kII32 = 1250 S-1. The tyrosine-specific system behaves very similarly to the serine-specific system. Data are given for pH 7.2 (pH 6.0) for the binding of the second tRNA: kII12 = 1 X 10(8) (2.5 X 10(8)) M-1 S-1; kII21 = 470 (170) S-1; kII23 = 150 (530) S-1; kII32 = 1540 (720) S-1. The kinetic results are discussed in terms of their relevance to the recognition process and their relation to the anticooperative binding behaviour of tRNA to synthetase.  相似文献   

20.
Interaction of zinc ions with arsanilazotyrosine-248 carboxypeptidase A   总被引:1,自引:0,他引:1  
J Hirose  M Noji  Y Kidani  R G Wilkins 《Biochemistry》1985,24(14):3495-3502
The interaction between arsanilazotyrosine-248 carboxypeptidase A ([(Azo-CPD)Zn]) and excess zinc ions has been studied by stopped-flow and spectrophotometric methods at pH 8.2 and 7.7, I = 0.5 M (NaCl), and 25 degrees C. When excess zinc ions bind to arsanilazotyrosine-248 carboxypeptidase A, the characteristic red color, which arises from the intramolecular complex of the arsanilazotyrosine-248 residue with the active site zinc of the enzyme, changes to yellow with the inhibition of peptidase activity of the enzyme. Excess zinc ions have two binding sites for arsanilazotyrosine-248 carboxypeptidase A, and the binding constants of the first site (3.9 X 10(5) M-1 at pH 8.2; 7.1 X 10(4) M-1 at pH 7.7) are much larger than those of the second site (1.8 X 10(3) M-1 at pH 8.2; 7 X 10(2) M-1 at pH 7.7). The binding of excess zinc ions to the first site is completely correlated with the inhibition of the enzyme peptidase activity and the color change of the enzyme. The results can be understood in terms of zinc ions reacting with only one of three conformational states of arsanilazotyrosine-248 carboxypeptidase A [Harrison, L. W., Auld, D. S., & Vallee, B. L. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 4356].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号