首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatin is the in vivo target site for neocarzinostatin, a DNA strand scission antitumor drug. The effect of neocarzinostatin and its active chromophore component on HeLa cell chromatin is described here. Chromatin consisting of a mixture of mono-, di-, tri- and larger nucleosome fragments is prepared by micrococcal nuclease digestion of HeLa cell nuclei. Drug-induced conversion of chromatin to smaller sized fragments is measured by electrophoresis of the DNA on non-denaturing 4% polyacrylamide gels. Chromatin breakdown measured under these conditions is double-stranded in nature. In the presence of 2 mM dithiothreitol, neocarzinostatin causes degradation of large chromatin fragments and a loss of distinct nucleosome peaks. Detection of chromatin breakdown by neocarzinostatin is dependent upon the concentration of chromatin in the assay. When chromatin is increased from 14 to 70 micrograms/ml, changes in the larger fragments caused by 100 micrograms/ml neocarzinostatin become less obvious are are almost undetectable at 140 micrograms/ml chromatin. No change is observed when chromatin is treated with either neocarzinostatin or its chromophore in the absence of dithiothreitol. For detectable levels of chromatin degradation, 10 micrograms/ml neocarzinostatin is required compared to only 2.5 microgram/ml chromosome (expressed in microgram equivalent neocarzinostatin). Such degradation also occurs more rapidly with chromophore than with neocarzinostatin. Digestion of chromatin with neocarzinostatin continues for at least 30 min at 37 degrees C, while similar degradation caused by chromophore is complete in 1 min. Neocarzinostatin levels which actively degrade isolated chromatin can also effect release of soluble chromatin from intact nuclei. The released chromatin can serve as a substrate for micrococcal nuclease digestion. Such chromatin studies should prove useful in characterizing the mechanism of action of DNA reactive drugs such as neocarzinostatin.  相似文献   

2.
Several authors, including ourselves, have reported the existence of chromatosomes with DNA size larger than 166 bp in bird erythrocyte chromatin. It was tempting to correlate this increased DNA size with the presence of histone H5. In order to substantiate this hypothesis, we performed a micrococcal nuclease digestion kinetic on: chicken erythrocyte chromatin, either native, selectively depleted from H1, or from H1 and H5; and rat liver chromatin, either native or partially H1 depleted. The comparative analysis of the lengths of DNA in the chromatosome size region led to the following conclusions: - denaturing gels clearly reveal a first discrete pause at 178 nucleotides in H1 depleted chicken erythrocyte chromatin as well as in partially H1-depleted rat liver chromatin, before the material accumulates at the next intermediate 166 nucleotide chromatosome pause. - the generation of all discrete chromatosome bands is critically dependent on low ionic strength conditions and low Ca++ concentrations during the digestion, suggesting it may result from the protection of DNA cleavage sites by histone H5 or H1, C or N terminal domains.  相似文献   

3.
A comparison was made of the subunit organization of chromatin from regions of the genome with different metaphase chromosome banding characteristics by analyzing the accessibility of early and late replicating DNA in synchronized Chinese hamster ovary cells to digestion with staphylococcal nuclease. Three measures of nuclease susceptibility were employed: (1) the release of acid-soluble material; (2) a digestion index, P, which corresponds to the proportion of internucleosome segments which experienced at least one cleavage event; and (3) the size distribution of DNA fragments isolated from digested chromatin. Little or no difference was observed in the initial rates with which nuclease converted early and late replicating chromatin to acid-soluble material, although the initial digestion rates varied with time of cell collection in the cycle (metaphase > G1 mid-S > late-S or G2). Measurements of the digestion indices of material isolated from interphase cells suggested that initial cleavage events were more rapid in early replicating chromatin than in late replicating chromatin. In contrast, electrophoretic analysis revealed that oligomer DNA fragments from early labelled metaphase chromatin were slightly larger than corresponding fragments from late labelled metaphase chromatin. The size distribution of DNA in submonomer fragments obtained from extensively digested chromatin appeared to be identical regardless of the timing of replication or cell collection. Those small differences in chromatin digestibility that were observed may reflect subtle variations in the accessibility of internucleosome regions or perhaps in the higher-order arrangement of nucleosomes. However, no gross variation in accessibility to staphylococcal nuclease digestion was observed in chromatin localized to metaphase chromosome regions with vastly different cytological staining properties.  相似文献   

4.
Mcm10 (Dna43) is an essential protein for the initiation of DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog and found that it is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner and that it binds chromatin exclusively during the S phase of the cell cycle. However, the precise roles that Mcm10 plays are still unknown. To study the localization dynamics of human Mcm10, we established HeLa cell lines expressing green fluorescent protein (GFP)-tagged Mcm10. From early to mid-S phase, GFP-Mcm10 appeared in discrete nuclear foci. In early S phase, several hundred foci appeared throughout the nucleus. In mid-S phase, the foci appeared at the nuclear periphery and nucleolar regions. In the late S and G phases, GFP-Mcm10 was localized to nucleoli. Although (2)the distributions of GFP-Mcm10 during the S phase resembled those of replication foci, GFP-Mcm10 foci did not colocalize with sites of DNA synthesis in most cases. Furthermore, the transition of GFP-Mcm10 distribution patterns preceded changes in replication foci patterns or proliferating cell nuclear antigen foci patterns by 30-60 min. These results suggest that human Mcm10 is temporarily recruited to the replication sites 30-60 min before they replicate and that it dissociates from chromatin after the activation of the prereplication complex.  相似文献   

5.
Periodicity of DNA folding in higher order chromatin structures.   总被引:14,自引:2,他引:12       下载免费PDF全文
Each level of DNA folding in cells corresponds to a distinct chromatin structure. The basic chromatin units, nucleosomes, are arranged into solenoids which form chromatin loops. To characterize better the loop organization of chromatin we have assumed that the accessibility of DNA inside these structures is lower than on the outside and examined the size distribution of high mol. wt DNA fragments obtained from cells and isolated nuclei after digestion with endogenous nuclease or topoisomerase II. The largest discrete fragments obtained contain 300 kbp of DNA. Their further degradation proceeds through another discrete size step of 50 kbp. This suggests that chromatin loops contain approximately 50 kbp of DNA and that they are grouped into hexameric rosettes at the next higher level of chromatin structure. Based upon these observations a model by which the 30 nm chromatin fibre can be folded up into compact metaphase chromosomes is also described.  相似文献   

6.
An EcoRI chromatin fragment containing the adult beta-globin gene and flanking sequences, isolated from chicken erythrocyte nuclei, sediments at a reduced rate relative to bulk chromatin fragments of the same size. We show that the specific retardation cannot be reversed by adding extra linker histones to native chromatin. When the chromatin fragments are unfolded either by removing linker histones or lowering the ionic strength, the difference between globin and bulk chromatin fragments is no longer seen. The refolded chromatin obtained by restoring the linker histones to the depleted chromatin, however, exhibits the original sedimentation difference. This difference is therefore due to a special property of the histone octamers on the active gene that determines the extent of its folding into higher-order structure. That it is not due to the differential binding of linker histones in vitro is shown by measurements of the protein to DNA ratios using CsCl density-gradients. Both before and after selective removal of the linker histones, the globin gene fragment and bulk chromatin fragments exhibit only a marginal difference in buoyant density. In addition, we show that cleavage of the EcoRI fragment by digestion at the 5' and 3' nuclease hypersensitive sites flanking the globin gene liberates a fragment from between these sites that sediments normally. We conclude that the hypersensitive sites per se are responsible for the reduction in sedimentation rate. The non-nucleosomal DNA segments appear to be too long to be incorporated into the chromatin solenoid and thus create spacers between separate solenoidal elements in the chromatin, which can account for its hydrodynamic behaviour.  相似文献   

7.
8.
The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication fork stalling in a manner that is dependent on the single stranded binding protein replication protein A (RPA). ATR associates with chromatin in asynchronous cell cultures, and we use a variety of approaches to examine the association of ATR with chromatin in the absence of agents that cause genotoxic stress. Under our experimental conditions, ATR exhibits a decreased affinity for chromatin in quiescent cells and cells synchronized at mitosis but an increased affinity for chromatin as cells re-enter the cell cycle. Using centrifugal elutriation to obtain cells enriched at various stages of the cell cycle, we show that ATR associates with chromatin in a cell cycle-dependent manner, specifically during S-phase. Cell cycle association of ATR with chromatin mirrors that of RPA in addition to claspin, a cell cycle checkpoint protein previously shown to be a component of the replication machinery. Furthermore, association of ATR with chromatin occurs in the absence of detectable DNA damage and cell cycle checkpoint activation. These data are consistent with a model whereby ATR is recruited to chromatin during the unperturbed cell cycle and points to a role of ATR in monitoring genome integrity during normal S-phase progression.  相似文献   

9.
The cellular response to DNA breaks consists of a complex signaling network that coordinates the initial recognition of the lesion with the induction of cell cycle checkpoints and DNA repair. With DNA wrapped around histone proteins and packaged into higher order levels of chromatin structure, the detection of a single DNA break (DSB) in the genome is the molecular equivalent of finding a needle in a haystack . A recent study from our laboratory used high-resolution electron microscropy and live cell imaging to demonstrate that chromatin undergoes a marked reorganization in response to a DSB. In an energy dependent manner, chromatin rapidly decondenses to a more open configuration in the regions surrounding the lesion. We propose that this ATP dependent chromatin remodeling event facilitates the subsequent recognition and processing of damaged DNA. While the chromatin surrounding the lesion remodels to a more open configuration, the DNA break itself remains relatively immobile over time, consistent with the idea that DNA damage response proteins migrate to positionally stable sites of damaged DNA 1. The lack of significant movement of chromatin regions containing DSBs has implications for the process by which chromosomal translocations form.  相似文献   

10.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

11.
Summary The macronuclear chromatin of Oxytrichia nova consists of chromatin fragments which are fully soluble in 0.2 mM EDTA and whose DNA length varies from 500–25 000 bp. The DNA migrates electrophoretically as a series of discrete bands, with specific genes present in only one or a few bands. The chromatin fragments are composed of nucleosomes and migrate electrophoretically in proportion to their DNA length. These results suggest schemes for the fractionation of undigested chromatin in order to enrich for specific genes, facilitating analysis of changes in chromatin structure associated with changes in gene expression.  相似文献   

12.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

13.
Ribosomal DNA sequences attached to the nuclear matrix   总被引:2,自引:0,他引:2  
The organization of rat liver ribosomal DNA (rDNA) as matrix-attached DNA loops was examined using a protocol which fractionates chromatin from discrete regions of DNA loops. Southern blot analysis of matrix-attached and solubilized chromatin DNA fragments demonstrated that rDNA is associated with the matrix via its 5' and 3' nontranscribed spacer sequences (NTS). Although the 45 S rRNA coding sequences were approximately threefold enriched in matrix preparations, the recovery of this DNA (unlike the NTS) was dependent on the extent of nuclease digest and proportional to the length of the matrix-attached DNA fragments. The data suggest that rDNA is organized as matrix-attached DNA loops and only the NTS are directly involved in matrix binding. Further, we demonstrated that while the kinetics and extent of nuclease digestion were similar in all regions of the DNA loops, the nuclease digestion pattern of bulk nuclear and matrix DNA showed a typical nucleosome organization, but the rDNA fragments retained with the nuclear matrix did not.  相似文献   

14.
15.
Mouse erythroleukemic F4 N cells were treated with mimosine, etoposide, Fe(II)-EDTA, and Cu(II) in the presence of ascorbate. DNA was isolated and subjected to agarose gel electrophoresis and the size and distribution of the DNA fragments produced by the agents were compared. With increasing concentration of Cu(II) the production of DNA fragments was increased without decrease of the average length of the fragments, and their sizes were similar to those produced by etoposide as expected for cleavage of DNA at the nuclear matrix attachments sites. In contrast, mimosine and Fe(II) produced fragments of random size and with the progression of the reaction the average length of the fragments decreased. These results indicate that mimosine cuts DNA in a random fashion, regardless of its higher order chromatin organization. A conclusion is drawn that the DNA fragments obtained after mimosine treatment are a result of mimosine-assisted, Fe(II) dependent Fenton-like reactions randomly cutting chromosomal DNA.  相似文献   

16.
C Wu  P M Bingham  K J Livak  R Holmgren  S C Elgin 《Cell》1979,16(4):797-806
When the chromatin of Drosophila is examined by digestion with DNAase I or micrococcal nuclease, no general structural organization above the level of the nucleosome is revealed by the cleavage pattern. In contrast, the DNAase I cleavage pattern of specific regions of the Drosophila chromosome shows discrete bands with sizes ranging from a few kilobase pairs (kb) to more than 20 kb. Visualization of such higher order bands was achieved by the use of the Southern blotting technique. The DNAase I-cleaved fragments were transferred onto a nitrocellulose sheet after size fractionation by gel electrophoresis. Hybridization was then carried out with radioactively labeled cloned fragments of DNA from D. melanogaster. For the five different chromosomal regions examined, each gives a unique pattern of higher order bands on the autoradiogram; the patterns are different for different regions. Restriction enzyme cleavage of the fragments generated indicates that the preferential DNAase I cleavage sites in chromatin are position-specific. The chromosomal regions bounded by preferential DNAase I cleavage sites are referred to as supranucleosomal or higher order domains for purposes of discussion and analysis. The micrococcal nuclease cleavage pattern of chromatin at specific loci was also examined. In the one case studied in detail, this nuclease also cleaves at position-specific sites.  相似文献   

17.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

18.
Ectopic pairing of chromosome regions containing chemically similar DNA   总被引:7,自引:2,他引:5  
Using genetically controlled stocks ofDrosophila melanogaster we have compared the frequency of ectopic pairing in a line showing intense quinacrine fluorescence at two sites (81F and 83E) on chromosome 3 with one showing such fluorescence at only one of these sites (81F). The frequency of ectopic pairing is an order of magnitude greater in cells from the line showing intense fluorescence in both regions than in the line showing it in only one. These data indicate that ectopic pairing is dependent upon properties of discrete chromosome regions as small as individual bands. Since A: T-rich chromatin is known to fluoresce intensely after quinacrine staining, these data further suggest that ectopic pairing is dependent on similarities of the DNA of the discrete chromosome regions involved.  相似文献   

19.
On the occurrence of nucleosome phasing in chromatin.   总被引:15,自引:0,他引:15  
D Lohr  K Tatchell  K E Van Holde 《Cell》1977,12(3):829-836
We have found that DNAase I digestion of yeast, HeLa and chicken erythrocyte nuclei produces a pattern of DNA fragments spaced 10 bases apart and extending to at least 300 bases. This "extended ladder" of DNA fragments is most clearly seen with yeast, and least clearly with chicken erythrocytes. The appearance of regular and discrete bands at sizes much larger than the repeat size shows that the core particles (140 bp of DNA + H2A, H2B, H3 H4) in at least some fraction of chromatin are spaced in a particular fashion, by discrete lengths of spacer DNA, and not randomly. Based on the abundance of small repeats in yeast and from experiments with nucleosome oligomers, we conclude that the extended ladder and nucleosomal phasing probably arise mainly from regions in the chromatin in which nucleosome cores are closely packed or closely spaced (140-160 bp X n). Contributions from less closely packed but still accurately phased nucleosomes, however, cannot be entirely excluded.  相似文献   

20.
A qualitative impairment of natural killer (NK) function and the presence of circulating DNA have been independently reported in clinical situations such as cancer and lupus. The existence of receptors for chromatin fragments at the leukocyte membrane raised the question of the relation between the presence of chromatin fragments in the extracellular medium and the impairment of NK function. The present study shows that plasmas from patients with metastatic cancer and with pathological DNA concentrations inhibited significantly the NK activity of normal lymphocytes as compared to cancer plasmas with DNA concentrations in the normal range. In vitro, it was demonstrated that chromatin fragments inhibited the NK-mediated cytotoxicity in a dose-dependent manner. Inhibitory concentrations of nucleosomes (2.5–10 g/ml) were lower than those of DNA and histones alone (100 g/ml). Inhibitory effects of nucleosomes, DNA and histones differed also according to the effector population used: nucleosomes were effective whatever the CD56+ cell enrichment of the effector population, while DNA inhibition needed T cells, and histone inhibition probably resulted from a subtoxic effect, prevented by the presence of adherent cells. Finally we found that nucleosomes could inhibit the NK function only when they were present in the extracellular medium. Taken together, these data suggest that the persistence of nucleosomal DNA at sites of cell death or in the blood might be responsible, at least partly, for the NK activity impairment observed in pathological circumstances characterized by a high rate of cell death phenomena such as cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号