首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The O-GlcNAc post-translational modification is considered to act as a sensor of nutrient flux through the hexosamine biosynthetic pathway. A cornerstone of this hypothesis is that global elevation of protein O-GlcNAc levels, typically induced with the non-selective O-GlcNAcase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-D-glycopyranosylidene) amino-N-phenylcarbamate), causes insulin resistance in adipocytes. Here we address the potential link between elevated O-GlcNAc and insulin resistance by using a potent and selective inhibitor of O-GlcNAcase (NButGT (1,2-dideoxy-2'-propyl-alpha-D-glucopyranoso-[2,1-D]-Delta 2'-thiazoline), 1200-fold selectivity). A comparison of the structures of a bacterial homologue of O-GlcNAcase in complex with PUGNAc or NButGT reveals that these inhibitors bind to the same region of the active site, underscoring the competitive nature of their inhibition of O-GlcNAcase and the molecular basis of selectivity. Treating 3T3-L1 adipocytes with NButGT induces rapid increases in global O-GlcNAc levels, but strikingly, NButGT treatment does not replicate the insulin desensitizing effects of the non-selective O-GlcNAcase inhibitor PUGNAc. Consistent with these observations, NButGT also does not recapitulate the impaired insulin-mediated phosphorylation of Akt that is induced by treatment with PUGNAc. Collectively, these results suggest that increases in global levels of O-GlcNAc-modified proteins of cultured adipocytes do not, on their own, cause insulin resistance.  相似文献   

2.
Free oligosaccharides (fOS) are generated as the result of N-glycoproteins catabolism that occurs in two distinct principal pathways: the endoplasmic reticulum-associated degradation (ERAD) of misfolded newly synthesized N-glycoproteins and the mature N-glycoproteins turnover pathway. The O-(2-acetamidO-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) is a potent inhibitor of the O-GlcNAcase (OGA) catalysing the cleavage of β-O-linked 2-acetamido-2-deoxy-β-D-glucopyranoside (O-GlcNAc) from serine and threonine residues of post-translationaly O-GlcNAc modified proteins. In order to estimate the impact of O-GlcNAc modification on N-glycoproteins catabolism, fOS were analysed by mass spectrometry (MS). MS analysis revealed the appearance of an unusual population of fOS after PUGNAc treatment. The structures representing this population have been identified as containing non-reducing end GlcNAc residues resulting from incomplete lysosomal fOS degradation. Only observed after PUGNAc treatment, the NButGt, another OGA inhibitor, did not lead to the appearance of this population. These abnormal fOS structures have clearly been shown to accumulate in membrane fractions as the consequence of lysosomal β-hexosaminidases inhibition by PUGNAc. As lysosomal storage disorders (LSD) are characterized by the accumulation of storage material as fOS in lysosomes, our study evokes that the use of PUGNAc could mimic a LSD. This study clearly points out another off target effects of PUGNAc that need to be taken into account in the use of this drug.  相似文献   

3.
4.
O-linked N-acetylglucosamine (O-GlcNAc) is attached to and detached from proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. It has been proposed that streptozotocin induces pancreatic beta-cell death by blocking O-GlcNAcase and increasing O-GlcNAc. To elucidate the relationship between cytosolic O-GlcNAc accumulation and beta-cell death, we treated beta-cell lines HIT-T15 and Min6 with glucosamine. Glucosamine markedly reduced cell viability in both cell lines only at 10 mM. The measurement of cytosolic O-GlcNAc under glucosamine treatment revealed that O-GlcNAc accumulation was observed even at 2 mM glucosamine and maximized at 5 mM, but did not occur very well at 10 mM. Furthermore, 100 microM PUGNAc, an inhibitor of O-GlcNAcase, increased cytosolic O-GlcNAc but did not induce cell death in these cells. Therefore, no correlation between accumulation of cytosolic O-GlcNAc and beta-cell death was suggested. Alternatively, inosine partially rescued cell death induced by glucosamine in Min6 cells, suggesting that energy depletion partly contributes to beta-cell death by glucosamine.  相似文献   

5.
The post-translational modification of serine and threonine residues of nucleocytoplasmic proteins with 2-acetamido-2-deoxy-d-glucopyranose (GlcNAc) is a reversible process implicated in multiple cellular processes. The enzyme O-GlcNAcase catalyzes the cleavage of beta-O-linked GlcNAc (O-GlcNAc) from modified proteins and is a member of the family 84 glycoside hydrolases. The family 20 beta-hexosaminidases bear no apparent sequence similarity yet are functionally related to O-GlcNAcase because both enzymes cleave terminal GlcNAc residues from glycoconjugates. Lysosomal beta-hexosaminidase is known to use substrate-assisted catalysis involving the 2-acetamido group of the substrate; however, the catalytic mechanism of human O-GlcNAcase is unknown. By using a series of 4-methylumbelliferyl 2-deoxy-2-N-fluoroacetyl-beta-D-glucopyranoside substrates, Taft-like linear free energy analyses of these enzymes indicates that O-GlcNAcase uses a catalytic mechanism involving anchimeric assistance. Consistent with this proposal, 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline, an inhibitor that mimics the oxazoline intermediate proposed in the catalytic mechanism of family 20 glycoside hydrolases, is shown to act as a potent competitive inhibitor of both O-GlcNAcase (K(I) = 0.070 microm) and beta-hexosaminidase (K = 0.070 microm). A series of 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline analogues were prepared, and one inhibitor demonstrated a remarkable 1500-fold selectivity for O-GlcNAcase (K(I) = 0.230 microm) over beta-hexosaminidase (K(I) = 340 microm). These inhibitors are cell permeable and modulate the activity of O-GlcNAcase in tissue culture. Because both enzymes have vital roles in organismal health, these potent and selective inhibitors of O-GlcNAcase should prove useful in studying the role of this enzyme at the organismal level without generating a complex chemical phenotype stemming from concomitant inhibition of beta-hexosaminidase.  相似文献   

6.
We have previously shown that preischemic treatment with glucosamine improved cardiac functional recovery following ischemia-reperfusion, and this was mediated, at least in part, via enhanced flux through the hexosamine biosynthesis pathway and subsequently elevated O-linked N-acetylglucosamine (O-GlcNAc) protein levels. However, preischemic treatment is typically impractical in a clinical setting; therefore, the goal of this study was to investigate whether increasing protein O-GlcNAc levels only during reperfusion also improved recovery. Isolated perfused rat hearts were subjected to 20 min of global, no-flow ischemia followed by 60 min of reperfusion. Administration of glucosamine (10 mM) or an inhibitor of O-GlcNAcase, O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc; 200 microM), during the first 20 min of reperfusion significantly improved cardiac functional recovery and reduced troponin release during reperfusion compared with untreated control. Both interventions also significantly increased the levels of protein O-GlcNAc and ATP levels. We also found that both glucosamine and PUGNAc attenuated calpain-mediated proteolysis of alpha-fodrin as well as Ca(2+)/calmodulin-dependent protein kinase II during reperfusion. Thus two independent strategies for increasing protein O-GlcNAc levels in the heart during reperfusion significantly improved recovery, and this was correlated with attenuation of calcium-mediated proteolysis. These data provide further support for the concept that increasing cardiac O-GlcNAc levels may be a clinically relevant cardioprotective strategy and suggest that this protection could be due, at least in part, to inhibition of calcium-mediated stress responses.  相似文献   

7.
An increasing amount of recent research has demonstrated that the hexosamine biosynthesis pathway (HBP) plays a significant role in the modulation of intracellular signaling transduction pathways, and affects cellular processes via modification of protein by O-linked β-N-acetylglucosamine (O-GlcNAc). Besides the many known and postulated effects of protein O-GlcNAc modifications, there is little available data on the role of O-GlcNAc in cellular volume regulation. Our objective was to test the effect of increased O-GlcNAc levels on hypotonia-induced volume changes in Jurkat cells. We pretreated Jurkat cells for 1 h with glucosamine (GlcN), PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)-amino-N-phenylcarbamate) an inhibitor of O-GlcNAcase, or a high level of glucose to induce elevated levels of O-GlcNAc. We found that the response of Jurkat cells to hypotonic stress was significantly altered. The hypotonia induced cell-swelling was augmented in both GlcN and PUGNAc-treated cells and, to a lesser extent, in high glucose concentration-treated cells. Evaluated by NMR measurements, GlcN and PUGNAc treatment also significantly reduced intracellular water diffusion. Taken together, increased cell swelling and reduced water diffusion caused by elevated O-GlcNAc show notable analogy to the regulatory volume changes seen by magnetic resonance methods in nervous and other tissues in different pathological states. In conclusion, we demonstrate for the first time that protein O-GlcNAc could modulate cell volume regulation.  相似文献   

8.
9.
NagZ is an N‐acetyl‐β‐d ‐glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram‐negative bacteria by removing N‐acetyl‐glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6‐anhydromuramoyl‐peptide products generated by NagZ activate β‐lactam resistance in many Gram‐negative bacteria by inducing the expression of AmpC β‐lactamase. Blocking NagZ activity can thereby suppress β‐lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X‐ray structures of NagZ bound to the potent yet non‐selective N‐acetyl‐β‐glucosaminidase inhibitor PUGNAc (O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene) amino‐N‐phenylcarbamate), and two NagZ‐selective inhibitors – EtBuPUG, a PUGNAc derivative bearing a 2‐N‐ethylbutyryl group, and MM‐156, a 3‐N‐butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM‐156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N‐acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.  相似文献   

10.
Chitinolytic β-N-acetyl-D-hexosaminidase is a branch of the GH20 (glycoside hydrolase family 20) β-N-acetyl-D-hexosaminidases that is only distributed in insects and micro-organisms, and is therefore a potential target for the action of insecticides. PUGNAc [O-(2-acetamido-2-deoxy-D-glucopyransylidene)-amino-N-phenylcarbamate] was initially identified as an inhibitor against GH20 β-N-acetyl-D-hexosaminidases. So far no crystal structure of PUGNAc in complex with any GH20 β-N-acetyl-D-hexosaminidase has been reported. We show in the present study that the sensitivities of chitinolytic β-N-acetyl-D-hexosaminidases towards PUGNAc can vary by 100-fold, with the order being OfHex1 (Ostrinia furnacalis β-N-acetyl-D-hexosaminidase)相似文献   

11.
We have previously shown that streptozotocin (STZ) inhibits O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase (O-GlcNAcase), the enzyme that removes O-GlcNAc from proteins. In light of this observation, we explored the possibility that the diabetogenic toxin alloxan, an O-GlcNAc transferase (OGT) inhibitor, might also inhibit O-GlcNAcase. Alloxan inhibited islet O-GlcNAcase with a dose-response much like that of STZ. Similar to STZ, islet O-GlcNAcase was more susceptible to alloxan inhibition than was brain O-GlcNAcase. Alloxan directly inhibited recombinant O-GlcNAcase activity with a dose-response very similar to that of STZ. Subsequent LC/MS/MS analysis revealed that alloxan modified the tryptic digest pattern of the enzyme. One tryptic peptide LGCFEIAK(894-901) was modified by alloxan. Two other tryptic peptides, LDQVSQFGCR(158-167) and SFALLFDDIDHNMCAADK(168-185), both N-terminal active site peptides, were absent after alloxan treatment. Together, these data demonstrate that alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase, with inhibition corresponding to an altered tryptic digest pattern of N-terminal active site peptides.  相似文献   

12.
S Ohnuma  T Koyama  K Ogura 《FEBS letters》1989,257(1):71-74
In the undecaprenyl diphosphate synthase reaction, an allylic substrate homologue, (2Z,6E,10E)-4-methyl-geranylgeranyl diphosphate was found to be a potent competitive inhibitor against the allylic primer, (2Z,6E,10E)-geranylgeranyl diphosphate. On the other hand, it acted as a strong noncompetitive inhibitor against isopentenyl diphosphate. On the basis of these facts, the topology of the substrate-binding sites as well as the reason why the synthase reaction with (E)-3-methyl-3-pentenyl diphosphate always stops completely at the first stage of condensation, yielding an allylic diphosphate with a methyl group at the 4-position, are discussed.  相似文献   

13.
Increased glucose flux through the hexosamine biosynthetic pathway (HBP) is known to affect the activity of a number of signal transduction pathways and lead to insulin resistance. Although widely studied in insulin responsive tissues, the effect of increased HBP activity on largely insulin unresponsive tissues, such as the brain, remains relatively unknown. Herein, we investigate the effects of increased HBP flux on Akt activation in a human astroglial cells line using glucosamine, a compound commonly used to mimic hyperglycemic conditions by increasing HBP flux. Cellular treatment with 8 mM glucosamine resulted in a 96.8% ± 24.6 increase in Akt phosphorylation after 5 h of treatment that remained elevated throughout the 9-h time course. Glucosamine treatment also resulted in modest increases in global levels of the O-GlcNAc protein modification. Increasing O-GlcNAc levels using the O-GlcNAcase inhibitor streptozotocin (STZ) also increased Akt phosphorylation by 96.8% ± 11.0 after only 3 h although for a shorter duration than glucosamine; however, the more potent O-GlcNAcase inhibitors O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) and 1,2-dideoxy-2′-propyl-α-d-glucopyranoso-[2,1-d]-Δ2′-thiazoline (NAGBT) failed to mimic the increases in phospho-Akt indicating that the Akt phosphorylation is not a result of increased O-GlcNAc protein modification. Further analysis indicated that this increased phosphorylation was also not due to increased osmotic stress and was not attenuated by N-acetylcysteine eliminating the potential role of oxidative stress in the observed phospho-Akt increases. Glucosamine treatment, but not STZ treatment, did correlate with a large increase in the expression of the endoplasmic reticulum (ER) stress marker GRP 78. Altogether, these results indicate that increased HBP flux in human astroglial cells results in a rapid, short-term phosphorylation of Akt that is likely a result of increased ER stress. The mechanism by which STZ increases Akt phosphorylation, however, remains unknown.  相似文献   

14.
O‐GlcNAc (2‐acetamino‐2‐deoxy‐β‐D‐glucopyranose), an important modification for cellular processes, is catalyzed by O‐GlcNAc transferase and O‐GlcNAcase. O‐(2‐acetamido‐2‐deoxy‐D‐glucopyranosylidene) amino‐N‐phenylcarbamate (PUGNAc) is a nonselective inhibitor of O‐GlcNAcase, which increases the level of protein O‐GlcNAcylation and is known to induce insulin‐resistance in adipose cells due to uncharacterized targets of this inhibitor. In this study, using ATP affinity chromatography, we applied a targeted proteomic approach for identification of proteins induced by treatment with PUGNAc. For optimization of proteomic methods using ATP affinity chromatography, comparison of two cell lines (3T3‐L1 adipocytes and C2C12 myotubes) and two different digestion steps was performed using four different structures of immobilized ATP‐bound resins. Using this approach, based on DNA sequence homologies, we found that the identified proteins covered almost half of ATP‐binding protein families classified by PROSITE. The optimized ATP affinity chromatography approach was applied for identification of proteins that were differentially expressed in 3T3‐L1 adipocytes following treatment with PUGNAc. For label‐free quantitation, a gel‐assisted method was used for digestion of the eluted proteins, and analysis was performed using two different MS modes, data‐independent (671 proteins identified) and data‐dependent (533 proteins identified) analyses. Among identified proteins, 261 proteins belong to nucleotide‐binding proteins and we focused on some nucleotide‐binding proteins, ubiquitin‐activation enzyme 1 (E1), Hsp70, vasolin‐containing protein (Vcp), and Hsp90, involved in ubiquitin‐proteasome degradation and insulin signaling pathways. In addition, we found that treatment with PUGNAc resulted in increased ubiquitination of proteins in a time‐dependent manner, and a decrease in both the amount of Akt and the level of phosphorylation of Akt, a key component in insulin signaling, through downregulation of Hsp90. In this study, based on a targeted proteomic approach using ATP affinity chromatography, we found four proteins related to ubiquitination and insulin signaling pathways that were induced by treatment with PUGNAc. This result would provide insight into understanding functions of PUGNAc in 3T3‐L1 cells.  相似文献   

15.
Many nuclear and cytoplasmic proteins are O-glycosylated on serine or threonine residues with the monosaccharide beta-N-acetylglucosamine, which is then termed O-linked N-acetylglucosamine (O-GlcNAc). It has been shown that abnormal O-GlcNAc modification (O-GlcNAcylation) of proteins is one of the causes of insulin resistance and diabetic complications. In this study, in order to examine the relationship between O-GlcNAcylation of proteins and glucose-stimulated insulin secretion in noninsulin-dependent type (type 2) diabetes, we investigated the level of O-GlcNAcylation of proteins, especially that of PDX-1, and the expression of O-GlcNAc transferase in Goto-Kakizaki (GK) rats, which are an animal model of type-2 diabetes. By immunoblot and immunohistochemical analyses, the expression of O-GlcNAc transferase protein and O-GlcNAc-modified proteins in whole pancreas and islets of Langerhans of 15-week-old diabetic GK rats and nondiabetic Wistar rats was examined. The expression of O-GlcNAc transferase at the protein level and O-GlcNAc transferase activity were increased significantly in the diabetic pancreas and islets. The diabetic pancreas and islets also showed an increase in total cellular O-GlcNAc-modified proteins. O-GlcNAcylation of PDX-1 was also increased. In the diabetic GK rats, significant increases in the immunoreactivities of both O-GlcNAc and O-GlcNAc transferase were observed. PUGNAc, an inhibitor of O-GlcNAcase, induced an elevation of O-GlcNAc level and a decrease of glucose-stimulated insulin secretion in isolated islets. These results indicate that elevation of the O-GlcNAcylation of proteins leads to deterioration of insulin secretion in the pancreas of diabetic GK rats, further providing evidence for the role of O-GlcNAc in the insulin secretion.  相似文献   

16.
O-N-acetylglucosaminylation is a reversible post-translational modification which presents a dynamic and highly regulated interplay with phosphorylation. New insights suggest that O-GlcNAcylation might be involved in striated muscle physiology, in particular in contractile properties such as the calcium activation parameters. By the inhibition of O-GlcNAcase, we investigated the effect of the increase of soleus O-GlcNAcylation level on the contractile properties by establishing T/pCa relationships. We increased the O-GlcNAcylation level on soleus biopsies performing an organ culture of soleus treated or not with PUGNAc or Thiamet-G, two O-GlcNAcase inhibitors. The enhancement of O-GlcNAcylation pattern was associated with an increase of calcium affinity on slow soleus skinned fibers. Analysis of the glycoproteins pattern showed that this effect is solely due to O-GlcNAcylation of proteins extracted from skinned biopsies. We also characterized the O-GlcNAcylated contractile proteins using a proteomic approach, and identified among others troponin T and I as being O-GlcNAc modified. We quantified the variation of O-GlcNAc level on all these identified proteins, and showed that several regulatory contractile proteins, predominantly fast isoforms, presented a drastic increase in their O-GlcNAc level. Since the only slow isoform of contractile protein presenting an increase of O-GlcNAc level was MLC2, the effect of enhanced O-GlcNAcylation pattern on calcium activation parameters could involve the O-GlcNAcylation of sMLC2, without excluding that an unidentified O-GlcNAc proteins, such as TnC, could be potentially involved in this mechanism. All these data strongly linked O-GlcNAcylation to the modulation of contractile activity of skeletal muscle.  相似文献   

17.
A series of new Z and E 3-[O-(benzyl-substituted)-oximino-ether]-hexahydroazepin-2,3 -diones was prepared from the corresponding hexahydroazepin-2,3-diones and examined as smooth muscle relaxants. E and Z structures were assigned by NMR analysis and confirmed for 16 (E and Z) by an X-ray diffraction using synchrotron radiations. The nitrobenzyl derivative 16 was the most potent in vitro as relaxant of rat trachea precontracted with acetylcholine. The E isomer 16b was more potent than the Z isomer 16a. E isomer 16b is more potent than aminophylline to relax both rat trachea and human bronchus.This derivative acts mainly by inhibiting cellular influx of extracellular calcium since it inhibits potently and dose-dependently the contractions of rat trachea to high concentrations of KCI and to CaCl2 in a depolarizing medium. It appears to act weakly by inducing cGMP and cAMP synthesis. Moreover, its relaxing activity is not related to an inhibition of phosphodiesterases, to opening of potassium channels or to induction of prostaglandin synthesis. Therefore, 16b appears to work mainly as a potent calcium antagonist.  相似文献   

18.
O‐linked β‐N‐acetylglucosaminylation (O‐GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O‐GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O‐GlcNAcylation. Here, using adenosine 5′‐triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O‐GlcNAcase inhibitor, O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide‐binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin‐activating enzyme E1, proteasome subunit 20S, cullin‐associated NEDD8‐dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O‐GlcNAc, and PUGNAc in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
PTMs are the ultimate elements that perfect the existence and the activity of proteins. Owing to PTM, not less than 500 millions biological activities arise from approximately 20 000 protein‐coding genes in human. Hundreds of PTM were characterized in living beings among which is a large variety of glycosylations. Many compounds have been developed to tentatively block each kind of glycosylation so as to study their biological functions but due to their complexity, many off‐target effects were reported. Insulin resistance exemplifies this problem. Several independent groups described that inhibiting the removal of O‐GlcNAc moieties using O‐(2‐acetamido‐2‐deoxy‐d‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), a nonselective inhibitor of the nuclear and cytoplasmic O‐GlcNAcase, induced insulin resistance both in vivo and ex vivo. The development of potent and highly selective O‐GlcNAcase inhibitors called into question that elevated O‐GlcNAcylation levels are responsible for insulin resistance; these compounds not recapitulating the insulin‐desensitizing effect of PUGNAc. To tackle this intriguing problem, a South Korean group recently combined ATP‐affinity chromatography and gel‐assisted digestion to identify proteins, differentially expressed upon treatment of 3T3‐L1 adipocytes with PUGNAc, involved in protein turnover and insulin signaling.  相似文献   

20.
The dynamic, intracellular, O-GlcNAc modification is of continuing interest and one whose study through targeted “chemical genetics” approaches is set to increase. Of particular importance is the inhibition of the O-GlcNAc hydrolase, O-GlcNAcase (OGA), since this provides a route to elevate cellular O-GlcNAc levels, and subsequent phenotypic evaluation. Such a small molecule approach complements other methods and potentially avoids changes in protein–protein interactions that manifest themselves in molecular biological approaches to O-GlcNAc transferase knockout or over-expression. Here we describe the kinetic, thermodynamic and three-dimensional structural analysis of a bacterial OGA analogue from Bacteroides thetaiotaomicron, BtGH84, in complex with a lactone oxime (LOGNAc) and a lactam form of N-acetylglucosamine and compare their binding signatures with that of the more potent inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc). We show that both LOGNAc and the N-acetyl gluconolactam are significantly poorer inhibitors than PUGNAc, which may reflect poorer mimicry of transition state geometry and steric clashes with the enzyme upon binding; drawbacks that the phenyl carbamate adornment of PUGNAc helps mitigate. Implications for the design of future generations of inhibitors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号