首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In peptide-based microarrays, most existing methods do not allow for site-specific immobilization of peptides on the glass surface. We have developed two new approaches for site-specific immobilization of kinase substrates onto glass slides: (1) slides were functionalized with avidin for attachment of biotinylated peptides; and (2) slides were functionalized with thioester for attachment of N-terminally cysteine-containing peptides via a native chemical ligation reaction.  相似文献   

2.
The development of a piezoelectric biosensor based on nucleic acids interaction is presented focusing on the methodology for probe immobilization. This is a key step in any DNA biosensor development. Often, the detection limits and, in general, the analytical performances of the biosensor can be improved by optimizing the immobilization of the receptor on the transducer surface. DNA must be attached to the solid support, retaining native conformation, and binding activity. This attachment must be stable over the course of a binding assay and, in addition, sufficient binding sites must be presented to the solution phase to interact with the analyte. In this paper, the optimization of the coating of the gold quartz crystal surface, to immobilize an oligonucleotide probe, is reported. Two immobilization procedures are illustrated in details with a comparison regarding the immobilization of the probe, the detection of the hybridization reaction, and the possibility of regeneration. The two procedures are based on the use of biotinylated or thiolated DNA probes. Specific applications will be also presented.  相似文献   

3.
We report on the study of immobilization DNA probes onto quartz crystal oscillators by self-assembly technique to form variety types of mono- and multi-layered sensing films towards the realization of DNA diagnostic devices. A 18-mer DNA probe complementary to the site of genetic beta-thalassaemia mutations was immobilized on the electrodes of QCM by covalent bonding or electrostatic adsorption on polyelectrolyte films to form mono- or multi-layered sensing films by self-assembled process. Hybridization was induced by exposure of the QCMs immobilized with DNA probe to a test solution containing the target nucleic acid sequences. The kinetics of DNA probe immobilization and hybridization with the fabricated DNA sensors were studied via in-situ frequency changes. The characteristics of QCM sensors containing mono- or multi-layered DNA probe constructed by direct chemical bonding, avidin-biotin interaction or electrostatic adsorption on polyelectrolyte films were compared. Results indicated that the DNA sensing films fabricated by immobilization of biotinylated DNA probe to avidin provide fast sensor response and high hybridization efficiencies. The effects of ionic strength of the buffer solution and the concentration of target nucleic acid used in hybridization were also studied. The fabricated DNA biosensor was used to detect a set of real samples. We conclude that the microgravimetric DNA sensor with its direct detection of amplified products provide a rapid, low cost and convenient diagnostic method for genetic disease.  相似文献   

4.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

5.
Abstract

This work describes, for the first time, the fabrication of poly(L-aspartic acid) (PAA) film modified pencil graphite electrode (PGE) for the detection of hepatitis C Virus 1a (HCV1a). The presence of PAA on the electrode surface can provide free carboxyl groups for covalent binding of biomolecules. The PGE surface was first coated with PAA via electropolymerization of the L-aspartic acid, and avidin was subsequently attached to the PAA modified electrode by covalent attachment. Biotinylated HCV1a probes were immobilized on avidin/PAA/PGE via avidin-biotin interaction. The morphology of PAA/PGE was examined using a scanning electron microscope. The hybridization events were monitored with square wave voltammetry using Meldola’s blue (MDB). Compared to non-complementary oligonucleotide sequences, when hybridization was carried out between the probe and its synthetic targets or the synthetic polymerase chain reaction analog of HCV1a, the highest MDB signal was observed. The linear range of the biosensor was 12.5 to 100?nM and limit of detection was calculated as 8.7?nM. The biosensor exhibited favorable stability over relatively long-term storage. All these results suggest that PAA-modified electrode can be used to nucleic acid biosensor application and electropolymerization of L-aspartic acid can be considered as a good candidate for the immobilization of biomolecules.  相似文献   

6.
Atomic force microscopy (AFM) and an optical grating coupler system were used to improve the understanding of the biosensing layer on a Ta(2)O(5)-light-guiding surface. Exemplary, we investigated the immobilization of the protein avidin, the subsequent binding of biotinylated oligonucleotides and hybridization of a complementary 12-mer. The AFM measurements revealed the height of approximately 1.6 nm for a single avidin molecule, while the thickness of the avidin layer on the biosensor surface seemed to be 2.8-3.0 nm. This result lead to the conclusion that the protein was not forming a simple monolayer. However, the thickness of the avidin layer could not be determined directly, but only after shifting of protein by the tip of the AFM leading to grooves of 1 micro m(2) and approximately 3 nm depth. As the height of oxide particles forming the waveguide surface was also in the range of 1.5 nm, the depth of these grooves could also be a result of the deposition of proteins on top of the oxide particles. This was consistent with the increased roughness of the surface after protein binding. Thus, investigations with the grating coupler were used to determine quantitatively the amount of immobilized avidin. On a biotinylated surface the amount of immobilized avidin lead to the assumption of a complete monolayer, whereas simple adsorption proved to be less efficient. A binding ratio of 1:1.3 for avidin and a biotinylated oligonucleotide was achieved. Up to 83% of the bound single strand were accessible for a subsequent hybridization reaction with a 12-mer. These results supported the model of avidin being deposited mainly on top of the oxide particles leading to the picture of a 'rough' complete protein monolayer, which was postulated from the AFM investigations.  相似文献   

7.
The treatment of aqueous solutions of plasmid DNA with the protein avidin results in significant changes in physical, chemical, and biochemical properties. These effects include increased light scattering, formation of micron-sized particles containing both DNA and protein, and plasmid protection against thermal denaturation, radical attack, and nuclease digestion. All of these changes are consistent with condensation of the plasmid by avidin. Avidin can be displaced from the plasmid at higher ionic strengths. Avidin is not displaced from the plasmid by an excess of a tetra-arginine ligand, nor by the presence of biotin. Therefore, this system offers the opportunity to reversibly bind biotin-labeled species to a condensed DNA–protein complex. An example application is the use of biotinylated gold nanoparticles. This system offers the ability to examine in better detail the chemical mechanisms involved in important radiobiological effects. Examples include protein modulation of radiation damage to DNA, and radiosensitization by gold nanoparticles  相似文献   

8.
A DNA array has been fabricated on glass substrates, which enables high-throughput analysis of single-base mismatches. In this work, microfabrication-compatible plasma-polymerization (PP) method was used for immobilizing probe DNAs to study the hybridization behavior by changing surface properties. The immobilization matrix consisting of 35 A of PP layer, applied additionally on the streptavidin absorbed hexamethyldisiloxane (HMDS)-PP layer, was constructed on the substrates to anchor biotinylated DNA probes onto the surface. The hydrophobic immobilization matrix was considered to enhance hybridization accuracy and efficiency, compared with its hydrophilic acetonitrile-PP layers. The oligonucleotide arrays fabricated on HMDS-PP surface were shown to be effective in detection of single nucleotide polymorphisms (SNPs) of ApoE gene.  相似文献   

9.
The ability to immobilize DNA probes onto gold substrates at an optimum surface density is key in the development of a wide range of DNA biosensors. We present a method to accurately control probe DNA surface density by the simultaneous co-immobilization of thiol modified probes and mercaptohexanol. Probe surface density is controlled by the thiol molar ratio in solution, with a linear relationship between thiol molar ratio and probe density spanning (1-9) x10(12)/cm2. The probe surface density per microscopic surface area was determined using chronocoulometry, and a detailed analysis of the method presented. Using this sample preparation method, the effect of probe density and hybridization on the charge transfer resistance with the negatively charged ferri/ferrocyanide redox couple was determined. Above a threshold probe surface density of 2.5 x 10(12)/cm2, electrostatic repulsion from the negatively charged DNA modulates the charge transfer resistance, allowing hybridization to be detected. Below the threshold density no change in charge transfer resistance with probe density or with hybridization occurs. The probe surface density was optimized to obtain the maximum percentage change in charge transfer resistance with hybridization.  相似文献   

10.
Controlled layer-by-layer immobilization of horseradish peroxidase.   总被引:2,自引:0,他引:2  
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzyme's activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme.  相似文献   

11.
Visual DNA microarrays, based on gold label silver stain (GLSS) and coupled with multiplex asymmetrical PCR, were developed for simultaneous, sensitive and specific detection of Ureaplasma urealyticum and Chlamydia trachomatis. 5'-end-amino-modified oligonucleotides, which were immobilized on glass surface, acted as capturing probes that were designed to bind complementary biotinylated targets DNA. The gold-conjugated streptavidins were introduced to the microarray for specific binding to biotin. The black image of microarray spots, resulting from the precipitation of silver onto nanogold particles bound to streptavidins, were used to detect biotinylated targets DNA visually or with a visible light scanner. Multiplex asymmetrical PCR of U. urealyticum, C. trachomatis and Bacillus subtilis (used as positive control) was performed to prepare abundant biotinylated single-stranded targets DNA, which affected detection efficiency and sensitivity of hybridization on microarray. Plenty of clinical samples of U. urealyticum and C. trachomatis from infected patients were tested using home-made DNA microarrays. For its high sensitivity, good specificity, simplicity, cheapness and speed, the present visual gene-detecting technique has potential applications in clinical fields.  相似文献   

12.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

13.
A piezoelectric DNA biosensor was prepared by immobilizing DNA probes on a quartz crystal microbalance (QCM) using a lipid-based method. A QCM electrode was coated with a hybrid bilayer membrane composed of an octadecanethiol monolayer and a lipid monolayer containing biotinylated lipids to establish biotin groups on the electrode surface. A DNA biosensor was prepared by sequentially immobilizing avidin and the biotinylated probe. The DNA biosensor was stable throughout repeated surface regeneration and showed higher sensitivity than that prepared by the conventional chemical method using diimide. We also optimized the surface regeneration conditions and flow rate for flow injection analysis.  相似文献   

14.
A simple, sensitive method to visualize the binding and internalization of protein ligands by cells in culture is described. A biotinylated toxin was used as ligand, and succinoylated avidin adsorbed onto 5.2 nm gold sols was the electron-dense marker. This method affords direct localization of proteins that are on the cell surface or intracellular without need for techniques that alter membrane integrity.  相似文献   

15.
Here we demonstrate that biotin covalently attached to cell surface obligates existing receptors to endocytose avidin bioconjugates into nucleated cells. Incubation of fluorescein-labeled avidin with biotinylated cell lines resulted in uniform and rapid surface attachment and endocytosis compared with no detectable association of the avidin-conjugated dye with unbiotinylated cells. Uptake was detected within minutes with efficiencies approaching 100% in cell lines and freshly obtained peripheral blood mononuclear cells. After 24 h, avidin was barely detectable on the surface of the nucleated cells. In marked contrast, fluorescent avidin remained exclusively on the external membrane of erythrocytes after 24 h. To investigate biotin-mediated endocytosis for the delivery of DNA, we prepared polyethylenimine-avidin (PEI-avidin) conjugates. Surface biotinylation significantly increased the transfection efficiencies of PEI-avidin condensed plasmid DNA coding green fluorescent protein (GFP) to the level of transferrin-receptor targeted gene delivery (15-20% GFP positive cells in culture after 48 h). The increase in transfection efficiency was blocked by the addition of free avidin or biotin to the culture medium. Biotin covalently bound to cell surface membrane proteins efficiently mediates the entry of avidin bioconjugates into nucleated cells.  相似文献   

16.
An immobilisation procedure based on the direct coupling of thiol-derivatised oligonucleotide probes to bare gold sensor surfaces has been used for DNA sensing applications. The instrumentation used relies on surface plasmon resonance (SPR) transduction; in particular the commercially available instruments BIACORE X and SPREETA, have been employed in this study. The performances of the SPR-based DNA sensors resulting from direct coupling of thiol-derivatised DNA probes onto gold chips, have been studied in terms of the main analytical parameters, i.e. selectivity, sensitivity, reproducibility, analysis time, etc. A comparison between the thiol-derivatised immobilisation approach and a reference immobilisation method, based on the coupling of biotinylated oligonucleotide probes onto a streptavidin coated dextran sensor surface, using synthetic complementary oligonucleotides has been discussed. Finally, a denaturation method to obtain ssDNA ready for hybridisation analysis has been applied to polymerase chain reaction (PCR) amplified samples, for the detection of genetically modified organisms (GMOs).  相似文献   

17.
The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.  相似文献   

18.
It was reported that avidin and streptavidin induce lysis of prebiotinylated red blood cells via the alternative pathway of both homologous and heterologous complement. Both of these proteins have four biotin-binding sites, providing a polyvalent interaction with biotinylated components of the erythrocyte membrane. We have compared the effects of mono- and multipoint avidin attachment on the sensitivity of biotinylated erythrocytes to lysis by the complement system. In the presence of anti-avidin antibody, avidin-bearing biotinylated erythrocytes were rapidly lysed by heterologous serum. This lysis was independent from the mode of avidin attachment, implying that complement activation by the classical pathway triggered by interaction between C1 and avidin-bound antibody on the erythrocyte surface is independent from the avidin's ability of polyvalent (multipoint) binding with biotinylated membrane components. In the absence of anti-avidin antibody, biotinylated erythrocytes bearing polyvalently attached avidin were lysed by homologous complement better than cells bearing avidin, which possesses reduced ability for multipoint binding with biotinylated erythrocyte. Two independent approaches to reduce avidin's ability of multipoint binding were used: decrease in surface density of biotin on the erythrocyte membrane and blockage of biotin-binding sites of avidin. Both methods result in reduced lysis of avidin-bearing erythrocytes as compared with erythrocytes bearing an equal amount of polyvalent-bound avidin. Thus the activation of homologous complement via the alternative pathway depends on avidin's ability to 'cross-link' to the biotinylated components of the erythrocyte membrane.  相似文献   

19.
DNA probe immobilization on plastic surfaces and device assembly are both critical to the fabrication of microfluidic hybridization array channel (MHAC) devices. Three oligonucleotide (oligo) probe immobilization procedures were investigated for attaching oligo probes on four different types of plastic surfaces (polystyrene, polycarbonate, poly(methylmethacrylate), and polypropylene). These procedures are the Surmodics procedure, the cetyltrimethylammonium bromide (CTAB) procedure, and the Reacti-Bind procedure. To determine the optimal plastic substrate and attachment chemistry for array fabrication, we investigated plastic hydrophobicity, intrinsic fluorescence, and oligo attachment efficiency. The Reacti-Bind procedure is least effective for attaching oligo probes in the microarray format. The CTAB procedure performs well enough to use in array fabrication, and the concentration of CTAB has a significant effect on oligo immobilization efficiency. We also found that use of amine-modified oligo probes resulted in better immobilization efficiency than use of unmodified oligos with the CTAB procedure. The oligo probe immobilization on plastic surfaces by the Surmodics procedure is the most effective with regard to probe spot quality and hybridization sensitivity. A DNA hybridization assay on such a device results in a limit of detection of 12pM. Utilizing a CO(2) IR laser machining and adhesive layer approach, we have developed an improved procedure for realizing a DNA microarray inside a microfluidic channel. This device fabrication procedure allows for more feasible spot placement in the channel and reduced sample adsorption by adhesive tapes used in the fabrication procedure. We also demonstrated improved hybridization kinetics and increased detection sensitivity in MHAC devices by implementing sample oscillation inside the channel. A limit of detection of 5pM has been achieved in MHAC devices with sample oscillation.  相似文献   

20.
We have developed a procedure for the quantitation of specific DNA which employs nonradioisotopic probes and beta-galactosidase as a detector. The sample DNA was immobilized on a nitrocellulose filter paper. After the filter paper had been processed to hybridization with a biotinylated probe DNA, the paper was incubated with avidin-beta-galactosidase complex. The optimum ratio of avidin to biotinylated beta-galactosidase for preparation of a complex between the two was determined. The filter paper was punched. Each punched piece was put into a microtiter well and beta-galactosidase activity was measured using 4-methylumbelliferyl beta-D-galactosidase as a substrate. By this method, we were able to quantify as little as a few picograms of specific DNA. The application of this method for the quantitative assay of hepatitis B virus DNA in serum sample is also described. The sensitivity for the detection of the DNA by our method was practically comparable to that of the conventional radioisotopic method. The validity of our method for detection of the virus DNA was further supported by comparison with the serological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号