共查询到20条相似文献,搜索用时 0 毫秒
1.
Ghosh S Hamdan SM Cook TE Richardson CC 《The Journal of biological chemistry》2008,283(46):32077-32084
Escherichia coli thioredoxin binds to a unique flexible loop of 71 amino acid residues, designated the thioredoxin binding domain (TBD), located in the thumb subdomain of bacteriophage T7 gene 5 DNA polymerase. The initial designation of thioredoxin as a processivity factor was premature. Rather it remodels the TBD for interaction with DNA and the other replication proteins. The binding of thioredoxin exposes a number of basic residues on the TBD that lie over the duplex region of the primer-template and increases the processivity of nucleotide polymerization. Two small solvent-exposed loops (loops A and B) located within TBD electrostatically interact with the acidic C-terminal tail of T7 gene 4 helicase-primase, an interaction that is enhanced by the binding of thioredoxin. Several basic residues on the surface of thioredoxin in the polymerase-thioredoxin complex lie in close proximity to the TBD. One of these residues, lysine 36, is located proximal to loop A. The substitution of glutamate for lysine has a dramatic effect on the binding of gene 4 helicase to a DNA polymerase-thioredoxin complex lacking charges on loop B; binding is decreased 15-fold relative to that observed with wild-type thioredoxin. This defective interaction impairs the ability of T7 DNA polymerase-thioredoxin together with T7 helicase to mediate strand displacement synthesis. This is the first demonstration that thioredoxin interacts with replication proteins other than T7 DNA polymerase. 相似文献
2.
3.
Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7 总被引:34,自引:0,他引:34
Bacteriophage T7 gene 5 protein has been purified to apparent homogeneity from cells overexpressing its gene several hundred-fold. Gene 5 protein is a DNA polymerase with low processivity; it dissociates from the primer-template after catalyzing the incorporation of 1-50 nucleotides, depending on the salt concentration. Escherichia coli thioredoxin, a host protein that is tightly associated with the gene 5 protein in phage-infected cells, is not required for this activity. Thioredoxin acts as an accessory protein to bestow processivity on the polymerizing reaction; DNA synthesis catalyzed by the gene 5 protein-thioredoxin complex on a single-stranded DNA template can polymerize thousands of nucleotides without dissociation. Conditions that increase the stability of secondary structures in the template (i.e., low temperature or high ionic strength) decrease the processivity. E. coli single-stranded DNA-binding protein stimulates both the rate of elongation and the processivity of the gene 5 protein-thioredoxin complex. 相似文献
4.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA. 相似文献
5.
6.
7.
Quantitative analysis of DNA replication, in E. coli B cells infected by methyl methanesulfonate-treated bacteriophage T7, showed that production of phage DNA was delayed and decreased. The cause of the delay appeared to be a delay in host-DNA breakdown, the process which provides nucleotides for phage-DNA synthesis. In addition, reutilisation of host-derived nucleotides was impaired. These observations can be accounted for by a model in which methyl groups on phage DNA slow down DNA injection and also reduce the replicational template activity of the DNA once it has entered the cell. Repair of alkylated phage DNA may be required not only for replication but also for normal injection of DNA. 相似文献
8.
A DNA polymerase induced by bacteriophage T7 总被引:8,自引:0,他引:8
9.
Kinetic measurements of Escherichia coli RNA polymerase association with bacteriophage T7 early promoters 总被引:1,自引:0,他引:1
C J Dayton D E Prosen K L Parker C L Cech 《The Journal of biological chemistry》1984,259(3):1616-1621
During infection of Escherichia coli by bacteriophage T7, E. coli RNA polymerase utilizes only three promoters (A1, A2, and A3). In vitro, the A promoters predominate at very low polymerase concentration, but at higher polymerase concentration the minor B, C, D, and E promoters are used with equal efficiency. The binding constant for the initial association of polymerase with promoters and the forward rate of isomerization to an "open" complex capable of initiation have been measured for the A1, A3, C, and D promoters using the abortive initiation reaction. At 80 mM KCl, 37 degrees C, both major and minor promoters isomerize rapidly (t1/2 = 10 to 30 s). In contrast, initial binding to the minor promoters (KI = 10(7) ) is at least 10-fold weaker than binding to major promoters KI greater than or equal to 10(8) ), suggesting promoter selectivity in the T7 system occurs at the point of initial binding. Association kinetics of the A1 and C promoters on intact T7 were the same as measured on restriction fragments of length greater than or equal to 500 base pairs. All open complexes dissociated with half-lives longer than 1 h. Overall equilibrium binding constants estimated from kinetic measurements ranged from 10(10) to greater than or equal to 10(11) M-1 for minor and major promoters, respectively. Data on heparin attack and abortive initiation turnover rates indicate open complex polymerase conformation may be different at the A1 and A3 promoters. 相似文献
10.
11.
We have previously described an Escherichia coli K-12 mutant, Y49, which restricts the growth of bacteriophage T7 and causes the accumulation of short DNA molecules and head-related particles during infection. We now show that the basis for these effects is the inability of the T7 gene 2 product to inactivate the Y49 RNA polymerase during infection, similar to what has been shown by DeWyngaert and Hinkle (J. Biol. Chem. 254:11247--11253, 1979) for the BR3 and tsnB strains of E. coli. 相似文献
12.
13.
Incomplete entry of bacteriophage T7 DNA into F plasmid-containing Escherichia coli. 总被引:2,自引:1,他引:2 下载免费PDF全文
The penetration of bacteriophage T7 DNA into F plasmid-containing Escherichia coli cells was determined by measuring Dam methylation of the entering genome. T7 strains that cannot productively infect F-containing cells fail to completely translocate their DNA into the cell before the infection aborts. The entry of the first 44% of the genome occurs normally in an F-containing cell, but the entry of the remainder is aberrant. Bypassing the normal mode of entry of the T7 genome by transfecting naked DNA into competent cells fails to suppress F exclusion of phage development. However, overexpression of various nontoxic T7 1.2 alleles from a high-copy-number plasmid or expression of T3 1.2 from a T7 genome allows phage growth in the presence of F. 相似文献
14.
DNA polymerase III holoenzyme (holoenzyme) processively and rapidly replicates a primed single-stranded DNA circle to produce a duplex with an interruption in the synthetic strand. The precise nature of this discontinuity in the replicative form (RF II) and the influence of the 5' termini of the DNA and RNA primers were analyzed in this study. Virtually all (90%) of the RF II products primed by DNA were nicked structures sealable by Escherichia coli DNA ligase; in 10% of the products, replication proceeded one nucleotide beyond the 5' DNA terminus displacing (but not removing) the 5' terminal nucleotide. With RNA primers, replication generally went beyond the available single-stranded template. The 5' RNA terminus was displaced by 1-5 nucleotides in 85% of the products; a minority of products was nicked (9%) or had short gaps (6%). Termination of synthesis on a linear DNA template was usually (85%) one base shy of completion. Thus, replication by holoenzyme utilizes all, or nearly all, of the available template and shows no significant 5'----3' exonuclease action as observed in primer removal by the "nick-translation" activity of DNA polymerase I. 相似文献
15.
Properties of initiation complexes formed between Escherichia coli DNA polymerase III holoenzyme and primed DNA in the absence of ATP 总被引:2,自引:0,他引:2
O Kwon-Shin J B Bodner C S McHenry R A Bambara 《The Journal of biological chemistry》1987,262(5):2121-2130
In the presence of ATP, the beta subunit of the Escherichia coli DNA polymerase III holoenzyme can induce a stable initiation complex with the other holoenzyme subunits and primed DNA that is capable of highly processive synthesis. We have recently demonstrated that the ATP requirement for processive synthesis can be bypassed by an excess of the beta subunit (Crute, J., LaDuca, R., Johanson, K., McHenry, C., and Bambara, R. (1983) J. Biol. Chem. 258, 11344-11349). To examine the complex formed with excess beta subunit, and the lengths of the products of processive synthesis, we have designed a uniquely primed DNA template. Poly(dA)4000 was tailed with dCTP by terminal deoxynucleotidyl transferase and the resulting template annealed to oligo(dG)12-18. In the presence of excess beta, the lengths of processively extended primers nearly equaled the full-length of the DNA template. Similar length synthesis occurred in the presence or absence of spermidine or single-stranded DNA-binding protein. When the beta subunit was present at normal holoenzyme stoichiometry it could induce highly processive synthesis without ATP, although inefficiently. Both ATP and excess beta increased the amount of initiation complex formation, but complexes produced with excess beta did so without the time delay observed with ATP, suggesting different mechanisms for formation. Almost 50% of initiation complexes formed without ATP survived a 30-min incubation with anti-beta IgG, reflecting a stability similar to those formed with ATP. The ability to form initiation complexes in the absence of ATP permitted the demonstration that cycling of the holoenzyme to a new primer, after chain termination with a dideoxynucleotide, is not affected by the presence of ATP. 相似文献
16.
17.
The T7 DNA primase synthesizes tetraribonucleotides that prime DNA synthesis by T7 DNA polymerase but only on the condition that the primase stabilizes the primed DNA template in the polymerase active site. We used NMR experiments and alanine scanning mutagenesis to identify residues in the zinc binding domain of T7 primase that engage the primed DNA template to initiate DNA synthesis by T7 DNA polymerase. These residues cover one face of the zinc binding domain and include a number of aromatic amino acids that are conserved in bacteriophage primases. The phage T7 single-stranded DNA-binding protein gp2.5 specifically interfered with the utilization of tetraribonucleotide primers by interacting with T7 DNA polymerase and preventing a productive interaction with the primed template. We propose that the opposing effects of gp2.5 and T7 primase on the initiation of DNA synthesis reflect a sequence of mutually exclusive interactions that occur during the recycling of the polymerase on the lagging strand of the replication fork. 相似文献
18.
19.
Two forms of the DNA polymerase of bacteriophage T7 总被引:8,自引:0,他引:8
The DNA polymerase induced by bacteriophage T7 can be isolated in two different forms. The distinguishing properties are: 1) the specific activities of the associated 3' to 5' single- and double-stranded DNA exonuclease activities, 2) the ability to catalyze DNA synthesis and strand displacement at nicks, and 3) the degree of stimulation of DNA synthesis on nicked, duplex DNAs by the gene 4 protein of phage T7. Form I is obtained when purification is carried out in the absence of EDTA while Form II is obtained if all purification steps are carried out in the presence of 0.1 mM EDTA. Form I has low levels of both exonuclease activities, less than 5% of those of Form II. Form I can initiate DNA synthesis at nicks leading to strand displacement, a consequence of which is its ability to be stimulated manyfold by the helicase activity of gene 4 protein on nicked, duplex templates. On the other hand, Form II cannot initiate synthesis at nicks even in the presence of gene 4 protein. In keeping with its higher exonuclease activities, Form II of T7 DNA polymerase has higher turnover of nucleotides activity (5-fold higher than Form I) and exhibits greater fidelity of nucleotide incorporation, as indicated by the rate of incorporation of 2-aminopurine deoxynucleoside monophosphate. Both forms of T7 DNA polymerase exhibit higher fidelity of nucleotide incorporation than bacteriophage T4 DNA polymerase. In the absence of EDTA or in the presence of FeSO4 or CaCl2, Form II irreversibly converts to Form I. The physical difference between the two forms is not known. No difference in molecular weight can be detected between the corresponding subunits of each form of T7 DNA polymerase as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. 相似文献