首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence suggests that unscheduled cell cycle activity leads to neuronal cell death. 3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces cell death in both striatum and cerebral cortex. Here we analyzed the involvement of aberrant cell cycle progression in 3-NP-induced cell death in these brain regions. 3-NP reduced the level of cyclin-dependent kinase inhibitor p27 in striatum but not in cerebral cortex. 3-NP also induced phosphorylation of retinoblastoma protein, a marker of cell cycle progression at late G(1) phase, only in striatum. Pharmacological experiments revealed that cyclin-dependent kinase activity and N-methyl-d-aspartate (NMDA) receptor were cooperatively involved in cell death by 3-NP in striatal neurons, whereas only NMDA receptor was involved in 3-NP-induced neurotoxicity in cortical neurons. Death of striatal neurons was preceded by elevation of somatic Ca(2+) and activation of calpain, a Ca(2+)-dependent protease. Both striatal p27 down-regulation and cell death provoked by 3-NP were dependent on calpain activity. Moreover, transfection of p27 small interfering RNA reduced striatal cell viability. In cortical neurons, however, there was no change in somatic Ca(2+) and calpain activity by 3-NP, and calpain inhibitors were not protective. These results suggest that 3-NP induces aberrant cell cycle progression and neuronal cell death via p27 down-regulation by calpain in striatum but not in the cerebral cortex. This is the first report for differential involvement of cell cycle reactivation in different brain regions and lightens the mechanism for region-selective vulnerability in human disease, including Huntington disease.  相似文献   

2.
Networks of neurons express persistent spontaneous network activity when maintained in dissociated cultures. Prolonged blockade of the spontaneous activity with tetrodotoxin (TTX) causes the eventual death of the neurons. In this study, we investigated some molecular mechanisms that may underlie the activity-suppressed slow degeneration of cortical neurons in culture. Already after 3–4 days of exposure to TTX, well before the neurons die, they began to express markers that lead to their eventual death, 7–10 days later. There was a reduction in glutamate receptor (GluR2) expression, a persistent increase in intracellular calcium concentration, activation of calpain, and an increase in spectrin breakdown products. At this point, blockade of GluR2-lacking GluR1 or calpain (either with a selective antagonist or through the natural regulator of calpain, calpastatin), protected cells from the toxic action of TTX. Subsequently, mitochondria lost their normal elongated shape as well as their membrane potential. Eventually, neurons activated caspase 3 and PUMA (p53 up-regulated modulator of apoptosis ), hallmarks of neuronal apoptosis, and died. These experiments will lead to a better understanding of slow neuronal death, typical of neurodegenerative diseases.  相似文献   

3.
Calpains mediate p53 activation and neuronal death evoked by DNA damage   总被引:6,自引:0,他引:6  
DNA damage is an initiator of neuronal death implicated in neuropathological conditions such as stroke. Previous evidence has shown that apoptotic death of embryonic cortical neurons treated with the DNA damaging agent camptothecin is dependent upon the tumor suppressor p53, an upstream death mediator, and more distal death effectors such as caspases. We show here that the calcium-regulated cysteine proteases, calpains, are activated during DNA damage induced by camptothecin treatment. Moreover, calpain deficiency, calpastatin expression, or pharmacological calpain inhibitors prevent the death of embryonic cortical neurons, indicating the important role of calpain in DNA damage-induced death. Calpain inhibition also significantly reduced and delayed the induction of p53. Consistent with the actions of calpains upstream of p53 and the proximal nature of p53 death signaling, calpain inhibition inhibited cytochrome c release and DEVD-AFC cleavage activity. Taken together, our results indicate that calpains are a key mediator of p53 induction and consequent caspase-dependent neuronal death due to DNA damage.  相似文献   

4.
Glutamate-induced neurotoxicity and calpain activity were studied in primary cultures of rat cerebellar granule neurons and glial cells. Calpain activation, as monitored by quantitative immunoblotting of spectrin, required micromolar concentrations of Ca2+ in neuronal homogenates (calpain I) and millimolar Ca2+ concentrations in glial homogenates (calpain II). Glutamate-induced toxicity and calpain activation were observed in neuronal, but not in glial, cultures. In neurons, calpain I activation by glutamate was dose-dependent and persisted after withdrawal of neurotoxic doses of glutamate. Natural (GM1) and semisynthetic (LIGA4) gangliosides or the glutamate receptor blocker MK-801 prevented calpain I activation and delayed neuronal death elicited by glutamate. GM1 and LIGA4 had no effect on calpain I activity in neuronal homogenates, however. Furthermore, two calpain I inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal) prevented glutamate-induced spectrin degradation, but failed to affect glutamate neurotoxicity. These results thus suggest that glutamate-induced neurotoxicity is independent of calpain I activation.  相似文献   

5.
The pathogenesis of various acute and chronic neurodegenerative disorders has been linked to excitotoxic processes and excess generation of nitric oxide. We investigated the deleterious effects of calpain activation in nitric oxide-elicited neuronal apoptosis. In this model, nitric oxide triggers apoptosis of murine cerebellar granule cells by an excitotoxic mechanism requiring glutamate exocytosis and receptor-mediated intracellular calcium overload. Here, we found that calcium-dependent cysteine proteases, calpains, were activated early in apoptosis of cerebellar granule cells exposed to nitric oxide. Release of the proapoptogenic factors cytochrome c and apoptosis-inducing factor from mitochondria preceded neuronal death. However, caspases-3 was not activated. We observed that procaspase-9 was cleaved by calpains to proteolytically inactive fragments. Inhibition of calpains by different synthetic calpain inhibitors or by adenovirally mediated expression of the calpastatin inhibitory domain prevented mitochondrial release of cytochrome c and apoptosis-inducing factor, calpain-specific proteolysis and neuronal apoptosis. We conclude that (i) signal transduction pathways exist that prevent the entry of neurons into a caspase-dependent death after mitochondrial release of cytochrome c and (ii) that calpain activation links nitric oxide-triggered excitotoxic events with the execution of caspase-independent apoptosis in neurons.  相似文献   

6.
Dysregulation of cyclin-dependent kinase 5 (Cdk5) by cleavage of its activator p35 to p25 by calpain is involved in the neuronal cell death observed in neurodegenerative disorders, including Alzheimer's disease. However, it is not yet clear how p25/Cdk5 induces cell death, although its cytosolic localization or extended half life are thought to be involved. We show here that endoplasmic reticulum (ER) stress causes the calpain-dependent cleavage of p35 to p25 in primary cultured cortical neurons. Generation of p25 occurred at a cell death execution step in ER-stressed neurons. p25 translocated to the nucleus in ER-stressed neurons, whereas p35/Cdk5 was perinuclear in control neurons. Cdk5 inhibitors or dominant-negative Cdk5 suppressed ER stress-induced neuronal cell death. These findings indicate that p25/Cdk5 is a proapoptotic factor that promotes ER stress-induced neuronal cell death in nuclei.  相似文献   

7.
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is mostly seen in neurons, does not vary with cell cycle, and is activated in many neurodegenerative disorders and other non-neuronal pathologies, but its relationship to non-neuronal apoptosis is not understood, nor is the control of the activation of Cdk5 by its activators. The most widely studied activator of Cdk5, p35, is cleaved to p25 by calpain, an event that has been linked with activation of Cdk5 and neuronal death. Here we report that calpain-mediated Cdk5/p25 activation accompanies non-neuronal as well as neuronal cell death, suggesting that the p35/calpain/p25/Cdk5 activation sequence is a general feature of cell death. We further demonstrate that Cdk5 can be activated in the absence of p53, Apaf-1, caspase-9, and -3 during cell death, indicating that its activation relates more to cell death than to a specific pathway of apoptosis.  相似文献   

8.
Hisanaga S  Saito T 《Neuro-Signals》2003,12(4-5):221-229
Cyclin-dependent kinase 5 (Cdk5) displays kinase activity predominantly in post-mitotic neurons and its physiological roles are unrelated to cell cycle progression. Cdk5 is activated by its binding to a neuron-specific activator, p35 or p39. The protein amount of p35 or p39 is a primary determinant of the Cdk5 activity in neurons, with the amount of p35 or p39 being determined by its synthesis and degradation. The expression of p35 is induced in differentiated neurons and is enhanced by extracellular stimuli such as neurotrophic factors or extracellular matrix molecules, specifically those acting on the ERK/Erg pathway. p35 is a short-lived protein and its degradation determines the life span. Degradation is mediated by the ubiquitin/proteasome system, similar to that for cyclins in proliferating cells. Autophosphorylation of p35 by Cdk5 is a signal for ubiquitination/degradation, and the degradation of p35 is triggered by glutamate treatment in cultured neurons. p35 is cleaved to p25 by calpain at the time of neuronal cell death, and this limited cleavage is suggested to be the cause of neurodegenerative diseases such as Alzheimer's disease. Active Cdk5 changes the cellular localization by cleavage of p35 to p25; p35/Cdk5 is associated with membrane or cytoskeletons, but p25/Cdk5 is a soluble protein. Cleavage also increases the life span of p25 and changes the activity or substrate specificity of Cdk5. p25/Cdk5 shows higher phosphorylating activity to tau than p35/Cdk5 in a phosphorylation site-specific manner. Phosphorylation of p35 suppresses cleavage by calpain. Thus, phosphorylation of p35 modulates its proteolytic pattern, stimulates proteasomal degradation and suppresses calpain cleavage. Phosphorylation is age dependent, as p35 is phosphorylated in foetal brains, but unphosphorylated in adult brains. Therefore, foetal phosphorylated p35 is turned over rapidly, whereas adult unphosphorylated p35 has a long life and is easily cleaved to p25 when calpain is activated. p39 is also a short-lived protein and cleaved to the N-terminal truncation form of p29 by calpain. How the metabolism of p39 is regulated, however, is a future problem to be investigated.  相似文献   

9.
Calpains are a family of calcium-dependent cysteine proteases involved in major cellular processes including cell death. Their intracellular localization is essential to the understanding of their biological functions. In a previous confocal microscopy study, we observed the presence of a calpain 3-like protein in the mammalian brain. We thus first identified and confirmed the presence of a calpain 3-like protease in a neuronal cell model (NGF-differentiated PC12 cells). The goal of this study was to determine, for the first time in non-muscular cells, the relation between the subcellular localization, activation and function of this protease. We thus investigated its ability to regulate nuclear IkappaBalpha and therefore NF-kappaB activation after cell death stimulation. The IkappaBalpha/NF-kappaB signalling pathway indeed influences the neurodegenerative process by directly affecting gene expression in neurons. In the present study, we found that calpain 3 is present in the cytoplasm and nucleus of neuron-like PC12 cells and could be activated through autolysis in the nuclei of cells undergoing apoptosis after ionomycin treatment. Moreover, in these conditions, we demonstrated formation of the IkappaBalpha/calpain 3 complex and an increase in calpain-dependent IkappaBalpha cleavage products in cell nuclei. Stimulation of calpain-dependent cell death in neuron activated nuclear calpain 3-like protease and IkappaBalpha proteolysis resulted in the regulation of NF-kappaB activation. These data suggest a new mechanism by which calpain 3 activation is able to regulate the IkappaBalpha/NF-kappaB pathway and thus neurodegenerative processes.  相似文献   

10.
Glutamate-induced excito-neurotoxicity likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases. Microglial clearance of dying neurons and associated debris is essential to maintain healthy neural networks in the central nervous system. In fact, the functions of microglia are regulated by various signaling molecules that are produced as neurons degenerate. Here, we show that the soluble CX3C chemokine fractalkine (sFKN), which is secreted from neurons that have been damaged by glutamate, promotes microglial phagocytosis of neuronal debris through release of milk fat globule-EGF factor 8, a mediator of apoptotic cell clearance. In addition, sFKN induces the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in microglia in the absence of neurotoxic molecule production, including NO, TNF, and glutamate. sFKN treatment of primary neuron-microglia co-cultures significantly attenuated glutamate-induced neuronal cell death. Using several specific MAPK inhibitors, we found that sFKN-induced heme oxygenase-1 expression was primarily mediated by activation of JNK and nuclear factor erythroid 2-related factor 2. These results suggest that sFKN secreted from glutamate-damaged neurons provides both phagocytotic and neuroprotective signals.  相似文献   

11.
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.  相似文献   

12.
The translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus has been implicated in the mechanism of glutamate excitotoxicity in cortical neurons and has been observed in vivo following acute rodent brain injuries. However, the mechanism and time course of AIF redistribution to the nucleus is highly controversial. Because elevated intracellular calcium is one of the most ubiquitous features of neuronal cell death, this study tested the hypothesis that cleavage of AIF by the calcium-activated protease calpain mediates its release from mitochondria. Both precursor and mature forms of recombinant AIF were cleaved near the amino terminus by calpain I in vitro. Mitochondrial outer membrane permeabilization by truncated Bid induced cytochrome c release from isolated liver or brain mitochondria but only induced AIF release in the presence of active calpain. Enzymatic inhibition of calpain by calpeptin precluded AIF release, demonstrating that proteolytic activity was required for release. Calpeptin and the mitochondrial permeability transition pore antagonist cyclosporin A also inhibited calcium-induced AIF release from mouse liver mitochondria, implicating the involvement of an endogenous mitochondrial calpain in release of AIF during permeability transition. Cleavage of AIF directly decreased its association with pure lipid vesicles of mitochondrial inner membrane composition. Taken together, these results define a novel mechanism of AIF release involving calpain processing and identify a potential molecular checkpoint for cytoprotective interventions.  相似文献   

13.
Recently we showed that the level of mitochondrial mRNA was decreased prior to neuronal death induced by glutamate. As the level of mRNA is regulated by ribonuclease (RNase), we examined RNase activity and its expression in the primary cultures of cortical neurons after glutamate treatment in order to evaluate the involvement of RNase in glutamate-induced neuronal death. A 15-min exposure of the cultures to glutamate at the concentration of 100muM produced marked neuronal damage (more than 70% of total cells) at 24-h post-exposure. Under the experimental conditions used, RNA degradation was definitely observed at a period of 4-12-h post-exposure, a time when no damage was seen in the neurons. Glutamate-induced RNA degradation was completely prevented by the N-methyl-d-aspartic acid (NMDA) receptor channel blocker MK-801 or the NR2B-containing NMDA receptor antagonist ifenprodil. Glutamate exposure produced enhanced expression of RNase L at least 2-12h later, which was absolutely abolished by MK-801. However, no significant change was seen in the level of RNase H1 mRNA at any time point post-glutamate treatment. Immunocytochemical studies revealed that RNase L expressed in response to glutamate was localized within the nucleus, mitochondria, and cytoplasm in the neurons. Taken together, our data suggest that expression of RNase L is a signal generated by NMDA receptor in cortical neurons. RNase L expression and RNA degradation may be events that cause neuronal damage induced by NMDA receptor activation.  相似文献   

14.
We investigated the status and the regulation of the cyclin-dependent kinases (CDK) inhibitor p27(Kip1) in a choroidal melanoma tumor-derived cell line (OCM-1). By contrast to normal choroidal melanocytes, the expression level of p27(Kip1) was low in these cells and the mitogen-activated protein (MAP) kinase pathway was constitutively activated. Genetic or chemical inhibition of this pathway induced p27(Kip1) accumulation, whereas MAP kinase reactivation triggered a down-regulation of p27(Kip1) that could be partially reversed by calpain inhibitors. In good accordance, ectopic expression of the cellular calpain inhibitor calpastatin led to an increase of endogenous p27(Kip1) expression. In vitro, p27(Kip1) was degraded by calpains, and OCM-1 cell extracts contained a calcium-dependent p27(Kip1) degradation activity. MAP kinase inhibition partially inhibited both calpain activity and calcium-dependent p27(Kip1) degradation by cellular extracts. Immunofluorescence labeling and subcellular fractionation revealed that p27(Kip1) was in part localized in the cytoplasmic compartment of OCM-1 cells but not of melanocytes, and accumulated into the nucleus upon MAP kinase inhibition. MAP kinase activation triggered a cytoplasmic translocation of the protein, as well as a change in its phosphorylation status. This CRM-1-dependent cytoplasmic translocation was necessary for MAP kinase- and calpain-dependent degradation. Taken together, these data suggest that in tumor-derived cells, p27(Kip1) could be degraded by calpains through a MAP kinase-dependent process, and that abnormal cytoplasmic localization of the protein, probably linked to modifications of its phosphorylation state, could be involved in this alternative mechanism of degradation.  相似文献   

15.
Intracellular calcium influx through NMDA receptors triggers a cascade of deleterious signaling events which lead to neuronal death in neurological conditions such as stroke. However, it is not clear as to the molecular mechanism underlying early damage response from axons and dendrites which are important in maintaining a network essential for the survival of neurons. Here, we examined changes of axons treated with glutamate and showed the appearance of βIII-tubulin positive varicosities on axons before the appearance of neuronal death. Dizocilpine blocked the occurrence of varicosities on axons suggesting that these microstructures were mediated by NMDA receptor activities. Despite early increased expression of pCaMKII and pMAPK after just 10 min of glutamate treatment, only inhibitors to Ca2+/calmodulin-dependent protein kinase II (CaMKII) and calpain prevented the occurrence of axonal varicosities. In contrast, inhibitors to Rho kinase, mitogen-activated protein kinase and phosphoinositide 3-kinase were not effective, nor were they able to rescue neurons from death, suggesting CaMKII and calpain are important in axon survival. Activated CaMKII directly phosphorylates collapsin response mediator protein (CRMP) 2 which is independent of calpain-mediated cleavage of CRMP2. Over-expression of CRMP2, but not the phosphorylation-resistant mutant CRMP2-T555A, increased axonal resistance to glutamate toxicity with reduced numbers of varicosities. The levels of both pCRMP2 and pCaMKII were also increased robustly within early time points in ischemic brains and which correlated with the appearance of axonal varicosities in the ischemic neurons. Collectively, these studies demonstrated an important role for CaMKII in modulating the integrity of axons through CRMP2 during excitotoxicity-induced neuronal death.  相似文献   

16.
Abstract : The inhibitor of apoptosis (IAP) family of anti-apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 m M potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome-linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 m M potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal-induced N -acetly-Asp-Glu-Val-Asp-specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μ M or 1 m M glutamate did not induce caspase activity and adenoviral-mediated expression of IAPs had no influence on subsequent excitotoxic cell death.  相似文献   

17.
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.  相似文献   

18.
Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2–3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.  相似文献   

19.
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.  相似文献   

20.
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号