首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Menchaca A  Rubianes E 《Theriogenology》2002,57(5):1411-1419
We studied the relationship between progesterone (P4) concentrations early in the estrus cycle and follicular dynamics in dairy goats. We used seven untreated goats (control group) and six progesterone treated goats (P group) with a controlled internal drug release device from Days 0 to 5 (Day 0: day of ovulation). We performed daily ultrasonograph during the interovulatory interval to determine ovarian change and took daily blood samples to determine serum estradiol 17beta (E2) and P4 concentrations by RIA. We divided the control goats into 3- (n = 4) and 4-wave goats (n = 3), according to the number of follicular waves recorded during the ovulatory cycle. Mean progesterone concentrations between Days I and 5 were higher and mean estradiol concentrations between Days 3 and 5 were lower in 4-wave goats (P4: 3.8+/-0.2 ng/ml; E2: 1.6+/-0.2 pg/ml) than in 3-wave goats (P4: 2.0+/-0.5 ng/ml, P < 0.05; E2: 4.4+/-0.9 pg/ml, P < 0.05). Wave 2 emerged earlier in 4-wave (Day 4.2+/-0.3) than in 3-wave goats (Day 7.3+/-0.3, P < 0.05). Three out of six of the progesterone-treated goats had short cycles (mean 8.0+/-0.0 days) and ovulated from Wave 1. The other three goats had shorter cycles (mean 18.3+/-0.3 days) than the control group (20.0+/-0.2 days; P < 0.05), although they were within the normal range of control cycles (shortened cycles). In the three treated goats with shortened cycles (two with four waves, one with three waves), mean progesterone concentrations between Days I and 5 were higher (4.7+/-0.6 ng/ml) than in the 3-wave control goats. In these goats, Wave 2 emerged at Day 4.3+/-0.3, similar to the time observed in 4-wave goats but earlier (P < or = 0.05) than in 3-wave control goats. Overall results confirm a relationship between the progesterone levels and the follicular wave turnover during the early luteal phase in the goat. Higher progesterone concentrations may accelerate follicular turnover probably by an early decline of the negative feedback action of the largest follicle of Wave 1. This is followed by an early emergence of Wave 2.  相似文献   

2.
The resumption of ovarian activity after normal calvings was studied in 18 lactating Friesian cows. Since, in 17 cows, first post-partum ovulation occurred without overt oestrous behaviour being detected, the resultant cycles were called 'ovarian cycles'. The mean (+/- s.d.) length of the ovarian cycles was 21.0 +/- 8.7 days. The duration of cycles tended to be normal (18-24 days) or long (greater than or equal to 25 days) when the ovulatory dominant follicles were identified before Day 10 post partum; they were consistently short (9-13 days) when dominant follicles identified after Day 20 post partum ovulated. When such follicles were detected between Days 10 and 20 post partum, long, normal and short ovarian cycles were detected. The number of waves of follicular growth with associated dominant follicles observed during the ovarian cycles tended to be related to cycle length; short cycles had 1 dominant follicle, normal cycles predominantly 2, and long cycles mostly 3 dominant follicles. The mean (+/- s.d.) duration of 13 oestrous cycles studied was 23.1 +/- 2.1 days. Of these cycles, 7 had 3 and 6 had 2 dominant follicles. The oestrous cycles with 3 dominant follicles had a mean (+/- s.d.) duration of 24.0 +/- 1.2 days and the respective dominant non-ovulatory follicles reached maximum sizes on Days 8 and 18, respectively; oestrous cycles with 2 dominant follicles were 22.2 +/- 2.6 days in duration, and the dominant non-ovulatory follicle reached maximum size by Day 8. Ovarian follicular development during the first 45 days of pregnancy was characterized by the growth and regression of successive dominant follicles, each lasting 10-12 days. These results show that the first ovarian cycle was predominantly short when the ovulatory dominant follicle was first detected after Day 20 post partum.  相似文献   

3.
Ovarian changes determined by daily transrectal ultrasonic scanning, and its correlation with serum progesterone (P4) and estradiol (E2) concentrations were studied in seven cyclic Saanen goats. Estrous cycles were synchronized with 2 injections of a PGF2 alpha analogue 9 d apart. All follicles > or = 2 mm in diameter and CL were measured each day. One goat showed a longer interestrous interval, associated with development of a cystic-luteinized structure. The mean interovulatory interval for the other 6 goats was 20.8 +/- 0.4 d. The incidence of goats with 4, 3, and 2 follicular waves was 3, 1 and 2 respectively; follicular waves emerged on Days 0.5 +/- 0.6, 7.2 +/- 0.7, 10.7 +/- 0.5 and 13.7 +/- 0.8 for Wave 1, 2, 3 and the Ovulatory wave, respectively. The largest follicle of Wave 2 was smaller (4.9 +/- 0.1 mm) than the largest follicles of Wave 3 (6.2 +/- 0.1 mm; P < or = 0.01) and of the Ovulatory wave (7.0 +/- 0.5 mm; P < or = 0.01), and tended to be smaller than the largest follicle of Wave 1 (6.3 +/- 0.6 mm; P < or = 0.09). Interval between emergence of Wave 1 and Wave 2 was longer than interval between emergence of Wave 2 and Wave 3 (7.3 +/- 0.9 d vs 4.0 +/- 0.4 d; P < or = 0.01), and between Wave 3 and the Ovulatory wave (3.8 +/- 1.1 d; P < or = 0.05). Two days before ovulation, the diameter of the ovulatory follicle was larger (P < or = 0.01) than the first subordinate follicle. Serum E2 concentrations increased from the day of ovulation (2.7 +/- 0.3 pg/mL) to Day 2 (7.6 +/- 0.9 pg/mL; P < or = 0.01), associated with the early-mid growing phase of the largest follicle of Wave 1, and then decreased to basal levels on Day 5 (P < or = 0.01) and peaked again (16.5 +/- 2.4 pg/mL) 2 d before ovulation. The CL were detected ultrasonically on Day 3 post ovulation and attained a mean maximum diameter of 13.5 +/- 0.8 mm between Days 8 and 14. The following characteristics were observed: 1) ovarian follicular development in goats is wave-like; 2) increased P4 concentrations may be promoting follicular wave turnover; 3) it is suggested that the presence of follicular dominance and the production of E2 are different among waves. While in Wave 1 and in the Ovulatory wave, follicular dominance is present and production of E2 is consistent, no changes in serum E2 concentrations were found in other stages of the interovulatory interval. In the intervening waves, no indicators of follicular dominance could be firmly documented.  相似文献   

4.
Follicular dynamics during the ovulatory season in goats   总被引:1,自引:0,他引:1  
Ginther OJ  Kot K 《Theriogenology》1994,42(6):987-1001
Growth and regression of ovarian follicles>or=3 mm were studied by transrectal ultrasonography for 4 interovulatory intervals in each of 5 Saanen goats. The observed number of growing identified 4-mm follicles per day differed (P<0.05) from randomness, indicating that follicles, on the average, emerged in groups (waves). Averaged over all interovulatory intervals, the number of 3-mm follicles on each day that later reached >or=6 mm followed a pattern of significant peaks on Days 0 (ovulation), 4,8 and 14. A follicular wave was defined by consecutive days of entry of follicles>or=6 mm into the wave, and the day of emergence was defined as the first day that the >or=6 mm follicles were 3 mm. In 15 of 20 (75%) interovulatory intervals, 1 wave emerged during each of Day -2 to Day 1 (Wave 1); Days 2 to 5 (Wave 2); Days 6 to 9 (Wave 3); and Days 10 to 15 (Wave 4). Ovulation occurred during Wave 4. The mean days of emergence of Waves 1 to 4 were Days -1, 4, 8 and 13, respectively. However, in 5 of these 15 interovulatory intervals, 50% of the apparent waves merged or were continuous so that a distinction could not be made between 2 waves. The largest follicle grew to a larger (P<0.05) maximum diameter for Waves 1 (8.7+/-0.3 mm) and 4 (9.7+/-0.3 mm) than for Waves 2 (7.2+/-0.2 mm) and 3 (7.3+/-0.2 mm). The following observations suggested that the phenomenon of follicular dominance was more common during Waves 1 and 4 than during Waves 2 and 3: 1) the interwave intervals (days) were longer (P<0.05) for Waves 1 (3.4+/-0.2) and 4 (4.3+/-0.6) than for Waves 2 and 3 (2.5+/-0.2 for each wave) and 2) the correlation between maximum diameter of largest follicle and the subsequent interwave interval was significant for Waves 1 and 4 but not for Waves 2 and 3. The 5 remaining interovulatory intervals were irregular and involved more than 4 waves, including 2 interovulatory intervals with prolonged follicular phases (14 and 21) and failures of ovulation. In conclusion, the predominant follicular-wave pattern was 4 waves with ovulation from Wave 4, and apparent follicular dominance was expressed during some follicular waves, especially during Waves 1 and 4.  相似文献   

5.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

6.
For 18 two-wave interovulatory intervals in heifers, the follicular waves were first detected on Days -0.2 +/- 0.1 and 9.6 +/- 0.2, and for 4 three-wave intervals on Days -0.5 +/- 0.3, 9.0 +/- 0.0 and 16.0 +/- 1.1 (ovulation is Day 0). The day-to-day mean diameter profile of the dominant follicle of the 1st wave and the day of emergence of the 2nd wave were not significantly different between 2-wave and 3-wave intervals. There were no indications, therefore, that events occurring during the first half of the interovulatory interval were associated with the later emergence of a 3rd wave. The dominant ovulatory follicle differed significantly (P less than 0.05 at least) between 2-wave and 3-wave intervals in day of emergence (Day 9.6 +/- 0.2 and 16.0 +/- 1.1), length of interval from emergence of follicle to ovulation (10.9 +/- 0.4 and 6.8 +/- 0.6 days), and diameter on day before ovulation (16.5 +/- 0.4 and 13.9 +/- 0.4 mm). The mean length of 2-wave interovulatory intervals (20.4 +/- 0.3 days) was shorter (P less than 0.01) than for 3-wave intervals (22.8 +/- 0.6 days). The mean day of luteal regression for 2-wave and 3-wave intervals was 16.5 +/- 0.4 and 19.2 +/- 0.5 (P less than 0.01). For all intervals, luteal regression occurred after emergence of the ovulatory wave, and the next wave did not emerge until near the day of ovulation at the onset of the subsequent interovulatory interval. In conclusion, the emergence of a 3rd wave was associated with a longer luteal phase, and the viable dominant follicle present at the time of luteolysis became the ovulatory follicle.  相似文献   

7.
It was hypothesized that growth divergence of dominant and subordinate follicles during Wave 1 and growth termination of the dominant follicle would be associated with changes in the number of gonadotropin receptors on granulosa cells and estradiol in follicular fluid. To test this hypothesis, follicular development of 16 Holstein heifers was monitored by ultrasound, and follicles were collected on Days 2,4,6 and 10 (Day 0 = ovulation). Dominant follicles were compared across days, whereas dominant and largest subordinate follicles were compared on Days 2 and 4 only. The numbers of LH and FSH receptors on the granulosa cells of dominant follicles did not differ significantly over Days 2, 4, 6 and 10. In contrast, concentrations of estradiol in follicular fluid decreased (P < 0.05) from Days 2 to 10 (373 +/- 150 to 42 +/- 12 ng/ml) and concentrations of progesterone in follicular fluid increased (P < 0.05) from Days 2 to 10 (12.2 +/- 2.3 to 24.4 +/- 4.8 ng/ml). Correspondingly, the ratio of estradiol:progesterone in the dominant follicles decreased (P < 0.05) from Days 2 to 10. Comparisons between dominant and subordinate follicles indicated greater (P < 0.05) estradiol concentrations in the dominant follicle on Day 2, but the number of gonadotropin receptors was not different until Day 4. Thus, differences in concentrations of follicular fluid estradiol, but not numbers of granulosa cell gonadotropin receptors, were associated with the early growth divergence of dominant and subordinate follicles (Day 2) and the eventual growth termination of the dominant follicle (Day 10). Late divergence (Day 4) was associated with higher gonadotropin receptor numbers and follicular estradiol concentrations in the dominant than in the subordinate follicles. These results indicate that an increase in estradiol productivity of the selected dominant follicle occurred before an increase in the number of gonadotropin receptors.  相似文献   

8.
Two hypotheses were tested: (1) a dominant follicle causes regression of its subordinate follicles, and (2) a dominant follicle during its growing phase suppresses the emergence of the next wave. Cyclic heifers were randomly assigned to one of four groups (6 heifers/group): cauterization of the dominant follicle of Wave 1 or sham surgery (control) on Day 3 or Day 5 (day of ovulation = Day 0). Ultrasonic monitoring of individually identified follicles was done once daily throughout the interovulatory interval. The onset of regression (decreasing diameter) of the largest subordinate follicle of Wave 1 was delayed (P less than 0.01) by cauterization of the dominant follicle of Wave 1 on Day 3 compared to controls (mean onset of regression, Days 10.8 +/- 2.1 vs 4.3 +/- 0.4). Cauterization of the dominant follicle of Wave 1 on Days 3 or 5 caused early emergence (P less than 0.01) of Wave 2 when compared to controls (Day-3 groups: Days 5.5 +/- 0.4 vs 9.6 +/- 0.7; Day-5 groups: Days 7.0 +/- 0.3 vs 9.1 +/- 0.4). The results supported the two hypotheses. In addition, cauterization of the dominant follicle of Wave 1 on Days 3 or 5 increased the incidence of 3-wave interovulatory intervals.  相似文献   

9.
The objectives of the present study were to determine follicular progesterone (P4) and estradiol-17beta (E2) in transitional mares and to compare follicular steroid concentrations between transitional and cyclic mares. Follicles > 8 mm were aspirated under transvaginal ultrasound-guidance 4 times at 3 to 4 day intervals (T1-T4) in Norwegian pony mares during vernal transition. During the breeding season, follicular aspirations were conducted in each mare on Day 6, Day 14 and Day 18 after ovulation of 3 separate estrous cycles (Day of ovulation = Day 0). Plasma and follicular fluids were analyzed for P4 and E2 with ELISA and RIA, respectively. Plasma P4 concentrations remained below 1 ng/mL throughout T1-T4, while the follicular P4 concentrations increased significantly to cyclic levels after the first transitional aspiration. Plasma E2 concentrations similarly remained at low levels during the course of the transitional aspirations, while the follicular E2 concentrations increased gradually over the 4 aspirations to cyclic concentrations. The mares ovulated on average 9.8 +/- 1.6 (mean +/- SEM) days after the last transitional aspiration, and 16.6 +/- 0.2, 11.3 +/- 1.5 and 23.2 +/- 4.4 days after aspirations conducted on Day 6, 14 and 18, respectively. The present study demonstrates that in the transitional mare newly developing follicles exhibit biosynthesis of P4 and E2. Furthermore, an increase in follicular steroid concentrations is not necessarily reflected in the peripheral steroid concentrations.  相似文献   

10.
We investigated factors that affect cumulus-oocyte complex (COC) morphology and oocyte developmental competence in subordinate follicles on different days after follicular wave emergence in beef heifers. In Experiment 1, heifers (n = 13) were assigned at random to COC aspiration during the growing/static (Days 1 to 3) or regressing (Day 5) phase of subordinate follicle development (follicular wave emergence = Day 0). Follicular wave emergence was induced by transvaginal ultrasound-guided follicular ablation, ovaries were collected at slaughter, all follicles > or = 2 mm except the dominant follicle were aspirated, and COC were microscopically evaluated for morphology. There was a greater percentage of COC with expanded cumulus layers on Day 5 (42.4%) than on Days 1 to 3 (2.2%). In Experiment 2, heifers (n = 64) at random stages of the estrous cycle had all follicles > or = 5 mm ablated and 4 d later, 2 doses of PGF were injected 12 h apart; heifers were monitored daily by ultrasonography for ovulation (Day 0 = follicular wave emergence). Heifers were assigned to the following time periods for oocyte collection from subordinate follicles: Days 0 and 1 (growing phase), Days 2, 3 and 4 (static phase), and Days 5 and 6 (regressing phase). Ovaries were individually collected at slaughter, and all follicles > or 2 mm except for the dominant follicle were aspirated. The COC were morphologically evaluated and then matured, fertilized and cultured in vitro. Expanded COC were more frequent during the regressing phase (53.4%) than the growing or static phase (14.4 and 17.8%, respectively; P < 0.05). While the proportions of COC with > or = 4 layers of cumulus cells and denuded oocytes were higher (P < 0.05) in the growing and static phases, the production of morulae was highest (P < 0.05) with COC collected from subordinate follicles during the regressing phase. In Experiment 3, heifers (n = 18) were assigned at random to oocyte collection from subordinate follicles 3 and 4 d (static phase) or 5 and 6 d (regressing phase) after follicular wave emergence. The heifers were monitored ultrasonically for ovulation (Day 0 = follicular wave emergence); COC were collected from all follicles (> or = 5 mm) except for the dominant follicle by transvaginal ultrasound-guided follicle aspiration 3 to 6 d later. Recovered oocytes were stained and examined microscopically to evaluate nuclear maturation. A higher proportion of oocytes collected on Days 5 and 6 showed evidence of nuclear maturation (50%) than on Days 3 and 4 (8.3%; P < 0.05). Results support the hypothesis that COC morphology and oocyte developmental competence change during the growing, static and regressing phases of subordinate follicle development.  相似文献   

11.
The aim of the present study was to examine the effect of steroid-free bovine follicular fluid (bFF) on both ovulation and lambing rates. For this purpose, 30 adult ewes of the Karaguniki breed were randomly allocated to three treatment groups (A,B and C; n=10 ewes each) during the breeding season of 1988. The ewes in Group A received bFF (6 ml iv) twice daily during their luteal phase, starting on Day 5 and lasting until Day 9. The ewes in Group B received a mixture of bFF/arachid oil (3 ml sc, 2:1) on Days 3, 4, 5, 10 and 12 of the estrous cycle. The ewes in Group C (Controls) were treated subcutanecusly with a mixture of steroid-free bovine plasma and arachid oil (2:1) on the same days as the ewes in Group B. Plasma concentrations of progesterone showed that the luteal function during the treatment cycle was normal in all treated and control ewes. The ovulation and lambing rates, however, were greater in Group A (2.5 +/- 0.2 and 1.9 +/- 0.3, respectively) and in Group B (2.1 +/- 0.2 and 1.6 +/- 0.1, respectively) than in Group C (1.5 +/- 0.2 and 1.2 +/- 0.3, respectively). Precipitating antibodies were detected in the plasma of Group B ewes only.  相似文献   

12.
The objective of this study was to determine whether plasma concentrations of progesterone (P4) from a controlled internal drug releasing (CIDR) device (approximately 2 ng/ml) were adequate to sustain a persistent first wave dominant follicle (FWDF) in low body condition (LBC, body condition score [BCS] 1 = lean, 5 = fat [2.3 +/- 0.72, n = 4]) compared with high body condition (HBC, BCS = 4.4 +/- 0.12, n = 4) nonlactating dairy cows. On Day 7 of the estrous cycle (Day 0 = estrus), cows were treated with PGF2 alpha (25 mg i.m. Lutalyse, P.M., and Day 8 A.M.) and a used CIDR device containing P4 (1.2 g) was inserted into the vagina until ovulation or Day 16. Plasma was collected for P4 and estradiol (E2) analyses from Day 5 to Day 18 (or ovulation), and ovarian follicles were monitored daily by ultrasonography. Mean concentrations of plasma P4 were greater in HBC than LBC cows between Days 5 and 7 (4.6 > 3.4 +/- 0.37 ng/ml; P < 0.04). All LBC cows maintained the first wave dominant follicle and ovulated after removal of the CIDR device (18.3 +/- 0.3 d, n = 3; Cow 4 lost the CIDR device on Day 11 and ovulated on Day 15), whereas in the HBC cows ovulation occurred during the period of CIDR exposure (11.3 +/- 0.3 d; n = 3; a fourth cow developed a luteinized first wave dominant follicle that did not ovulate during the experimental protocol on Day 19). Mean day of estrus was 17 +/- 0.4 for LBC (n = 3) and 10 +/- 0.4 for HBC (n = 3) cows. Sustained concentrations of plasma E2 (12.9 +/- 2.8 pg/ml; Days 8 to 17) in LBC cows reflected presence of an active persistent first wave dominant follicle. The differential effect of BCS on concentrations of plasma P4 (y = ng/ml) was reflected by the difference (P < 0.01) in regressions: yLBC = 19.9 - 3.49x + 0.166x2 vs yHBC = 37.3 - 7.04x + 0.340x2 (x = day of cycle, Days 7 to 12). Although P4 concentration was greater for HBC cows prior to Day 8, a greater clearance of plasma P4 released from the CIDR device in the absence of a CL altered follicular dynamics, leading to premature ovulation in the HBC cows. A greater basal concentration of P4 was sustained in LBC cows that permitted maintenance of a persistent first wave dominant follicle.  相似文献   

13.
Urine samples were collected daily during ten nonfertile and four fertile ovarian cycles of four adult female lion-tailed macaques (Macaca silenus). Urine was analyzed for concentrations of total immunoreactive estrogen (Et), estrone conjugates, and bioactive luteinizing hormones (LH). The estrone conjugates of selected samples were separated by high-performance liquid chromatography (HPLC) to evaluate the relative proportions of estrone glucuronide (E1 G) to estrone sulfate (E1 S) contributing to the sum total of the conjugate measured in the samples. The estrone conjugate profile was found to accurately reflect the preovulatory estrogen peak in both nonfertile and fertile cycles as well as the early pregnancy increase which was found to be statistically significant on Day + 14 postovulation (P = 0.003). Estrone conjugate levels rose in the early follicular phase from 126.00 +/- 24.07 (SEM) ng/mg creatinine to a preovulatory peak of 471.90 +/- 62.95 ng/mg creatinine. Fertile cycles exhibited a postovulatory climb to a peak of 515.00 +/- 38.00 ng/mg creatinine on Day + 19, in contrast to the secondary rise observed in nonfertile cycles that peaked at 148.11 +/- 13.80 ng/mg creatinine on Day + 10. Bioactive LH evaluations confirmed ovulation and, in the fertile cycles, reflected the subsequent elevation of chorionic gonadotropin on Day + 18. The estrone conjugate profile of fertile cycles and early pregnancy compared favorably to the Et profile: both showed the same time course and increases in estrogen excretion.  相似文献   

14.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

15.
Individual follicles were monitored by ultrasonography in 15 mares during the transitional period preceding the first ovulation of the year and in 9 mares during the first interovulatory interval. During the transitional period, 7 mares developed 1-3 anovulatory follicular waves characterized by a dominant follicle (maximum diameter greater than or equal to 38 mm) that had growing, static, and regressing phases. The emergence of a subsequent wave (anovulatory or ovulatory) did not occur until the dominant follicle of the previous wave was in the static phase. After the emergence of the subsequent wave, the previous dominant follicle regressed. The mean (+/- s.d.) length of the interval between successive waves was 10.8 +/- 2.2 days. Before the emergence of waves (identified by a dominant follicle), follicular activity seemed erratic and follicles did not reach greater than 35 mm. During the interovulatory interval, 6 mares developed 2 waves (an anovulatory wave and a subsequent ovulatory wave) and 3 mares developed only 1 detected wave (the ovulatory wave). The ovulatory follicle at the end of the transitional period reached 20 mm earlier (Day - 15), grew slower (2.6 +/- 0.1 mm/day; mean +/- s.e.m.) but reached a larger diameter on Day - 1 (50.5 +/- 1.1 mm) than for the ovulatory follicle at the end of the interovulatory interval (Day - 10, 3.6 +/- 0.2 mm/day, 44.4 +/- 1.0 mm, respectively; P less than 0.05 for each end point). The interval from cessation of growth of the largest subordinate follicle to the occurrence of ovulation was longer (P less than 0.05) for end of the transitional period (9.5 +/- 0.7 days) than for the end of the interovulatory interval (6.8 +/- 0.6 days). Results demonstrated the occurrence of rhythmic follicular waves during some transitional periods and the occurrence of 2 waves during some of the first oestrous cycles of the year.  相似文献   

16.
These experiments were designed to evaluate whether removal of approximately 95% visible ovarian tissue would interrupt the short- or long-term regulation of cyclic ovarian function. On cycle Days 2 4 (onset of menses = Day 1), the entire left ovary and approximately 90% of the right ovary were removed from three cycling cynomolgus monkeys. After approximately 95% ovariectomy, there was an acute elevation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which lasted 11 +/- 2 days. A midcycle-like gonadotropin surge occurred 20 +/- 3 days following approximately 95% ovariectomy; the next menses occurred 19 +/- 1 days later. Follicular phase patterns of estradiol preceded the midcycle gonadotropin surge, and luteal phase progesterone levels indicated subsequent ovulation. Two of three monkeys resumed normal menstrual cyclicity in the following cycle with follicular phase, luteal phase, and menstrual cycle lengths similar to pretreatment levels. Histological examination of the ovarian remnant removed on Day 21 of the next cycle revealed a morphologically normal corpus luteum and many small follicles. A second group of 6 rhesus monkeys also underwent approximately 95% ovariectomy for long-term evaluation of menstrual cyclicity; typical 28-day menstrual cycle patterns were observed in 4 of the 6 monkeys for 5 mo, with 2 of these 3 animals maintaining regular menstrual cycles for 1 yr. In summary, our data suggest that normal ovarian function, i.e. recruitment, selection, and dominance of the ovulatory follicle, ovulation, and subsequent corpus luteum function, is maintained with only approximately 5% of functional ovarian tissue remaining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Nineteen Corriedale ewes were treated with an im dose of a PGF2alpha during the luteal phase to synchronize estrus. After ovulation had been detected by using ultrasonography (Day 0); the ewes were randomly assigned to 2 different groups. In 11 ewes a CIDR, which had previously been used for 10 d, was inserted on the fourth day after ovulation. The ewes then received a dose of PGF2alpha on Day 5 to induce luteolysis. The CIDR remained in place until the end of the experiment (Day 9). Control ewes (n = 8) received no treatment. Blood samples were taken daily for estradiol, progesterone and FSH determinations. In the untreated ewes, 2 follicular waves were detected in all of the animals throughout the monitoring period, with a mean wave interval of 4.5 d. The total number of follicles which were > or =2 mm decreased from Day 0 to Day 4 (8.8+/-1.0 to 5.3+/-0.6; P< or =0.05) and then increased at Day 7 (7.5+/-0.9; P< or =0.05). The growth profiles of both the largest and the second largest follicles of Wave 1 showed significant divergence, while no divergence was observed in Wave 2. Serum estradiol concentrations decreased significantly from the day before to the day of ovulation and then increased again during the growing phase of the largest follicle of Wave 1. Concentrations of FSH were high on the day of emergence of both waves, but while a significant decline was observed after emergence in Wave 1, the levels remained high in Wave 2. In 8 of the 11 treated ewes, the largest follicle of Wave 1 was still present on the ninth day after ovulation (persistent follicle). In the other 3 ewes, the largest follicle of Wave 1 was already regressing on the day that the treatment was administered, and the largest follicle that was present on Day 9 originated from Wave 2 (nonpersistent follicle). In persistent follicle ewes, the largest follicle of Wave 1 prolonged its lifespan significantly, attaining the maximum diameter (Day 8.1+/-0.8) later than in untreated (Day 3.0+/-0.4) and nonpersisted follicle ewes (Day 2.0+/-0.6). The total number of follicles decreased in persistent follicle ewes between Day 0 and Day 4 (7.9+/-1.5 to 4.5+/-0.5, respectively; P< or =0.05) and remained low until the end of the experiment. Progesterone concentrations (nmol/L) between Days 6 and 9 were significantly different between untreated and persistent follicle ewes (12.8+/-1.0 vs. 9.4+/-1.0, P< or =0.02). The present study confirms that the largest follicle of Wave 1 is dominant in the ewe and that subluteal progesterone concentrations can prolong its lifespan and extend this dominance.  相似文献   

18.
Kim IH  Son DS  Yeon SH  Choi SH  Park SB  Ryu IS  Suh GH  Lee DW  Lee CS  Lee HJ  Yoon JT 《Theriogenology》2001,55(4):937-945
This study was to investigate whether removing the dominant follicle 48 h before superstimulation influences follicular growth, ovulation and embryo production in Holstein cows. After synchronization, ovaries were scanned to assess the presence of a dominant follicle by ultrasonography with a real-time linear scanning ultrasound system on Days 4, 6 and 8 of the estrus cycle (Day 0 = day of estrus). Twenty-six Holstein cows with a dominant follicle were divided into 2 groups in which the dominant follicle was either removed (DFR group, n=13) by ultrasound-guided follicular aspiration or left intact (control group, n=13) on Day 8 of the estrus cycle. Superovulation treatment was initiated on Day 10. All donors were superovulated with injections of porcine FSH (Folltropin) twice daily with constant doses (total: 400 mg) over 4 d. On the 6th and 7th injections of Folltropin, 30 mg and 15 mg of PGF2alpha (Lutalyse) were given. Donors were inseminated twice at 12 h and 24 h after the onset of estrus. Embryos were recovered on Day 6 or 7 after AI. During superstimulation, the number of follicles 2 to 5 mm (small), 6 to 9 mm (medium) and > or = 10 mm (large) was determined by ultrasonography on a daily basis. At embryo recovery, the number of corpora lutea (CL) was also determined by ultrasonography and blood samples were collected for analysis of progesterone concentration. Follicular growth during superstimulation was earlier in the DFR group than in the control group. The number of medium and large follicles was greater (P < 0.01) in the DFR group than in the control group on Days 1 to 2 and Days 3 to 4 of superstimulation, respectively. The numbers of CL (9.6+/-1.1 vs 6.1+/-0.9) and progesterone concentration (30.9+/-5.4 vs 18.6+/-3.5 ng/mL) were greater (P < 0.05) in the DFR group than in the control group, respectively. The numbers of total ova (7.7+/-1.3 vs 3.9+/-1.0) and transferable embryos (4.6+/-0.9 vs 2.3+/-0.8) were also greater (P < 0.05) in the DFR group than in the control group, respectively. It is concluded that the removal of the dominant follicle 48 h before superstimulation promoted follicular growth, and increased ovulation and embryo production in Holstein cows.  相似文献   

19.
The temporal relationships between follicle deviation and systemic hormone concentrations were studied in mares. Blood samples were obtained at 01:00, 07:00, 13:00, and 19:00 h from nine mares throughout an interovulatory interval. Diurnal variation in progesterone occurred on Days 4-12 and in LH on Days 4 and 5; the lowest concentration for both hormones was at 13:00 h. Ultrasonically observed deviation in the ovulatory follicular wave began on Day 15.7+/-0.5 (ovulation=Day 0). An increase (P<0.002) in LH began on Day 14 before the beginning of deviation, and an increase (P<0.05) in estradiol began at the beginning of deviation. Testosterone concentrations began to increase (P<0.05) 2 days after the beginning of deviation and reached maximum 1 day before the next ovulation. The beginning of deviation was encompassed by a decline (P<0.003) in cortisol concentrations, and the concentrations remained low during the preovulatory period.  相似文献   

20.
Ovarian changes determined by daily transrectal ultrasound and its relationship with FSH, LH, estradiol-17beta, progesterone, and inhibin were investigated in six goats for three consecutive interovulatory intervals. Estrous cycles were synchronized using two injections of prostaglandin F2alpha analogue 11 days apart. All follicles 3 mm or greater in diameter and corpora lutea were measured daily. A follicular wave was defined as one or more follicles growing to 5 mm or greater in diameter. The day that the follicles reached 3 mm in diameter was defined as the day of wave emergence, and the first wave after ovulation was defined as wave 1. During the interovulatory interval (mean +/- SEM, 21.3 +/- 0.4 days; n = 18), follicular waves emerged at 0.3 +/- 0.5, 6.5 +/- 0.2, and 12.1 +/- 0.4 days for wave 1, wave 2, and wave 3, respectively, in goats with three waves of follicular development and at -0.6 +/- 0.3, 4.7 +/- 0.2, 9.4 +/- 0.5, and 13.4 +/- 0.5 days for wave 1, wave 2, wave 3, and wave 4, respectively, in goats with four waves of follicular development (Day 0 = the day of ovulation). The mean diameter of the largest follicle of the ovulatory wave was significantly larger than those of the largest follicles of the other waves. Corpora lutea could be identified ultrasonically at Day 3 postovulation and attained 12.1 +/- 0.3 mm in diameter on Day 8. Transient increases in plasma concentrations of FSH were detected around the day of follicular wave emergence. The level of FSH was negatively correlated with that of inhibin. These results demonstrated that follicular waves occurred in goats and that the predominant follicular wave pattern was four waves with ovulation from wave 4. These results also suggested that the emergence of follicular waves was closely associated with increased secretion of FSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号