首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100?nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.  相似文献   

2.
Diseases of the retina are difficult to treat as the retina lies deep within the eye. Invasive methods of drug delivery are often needed to treat these diseases. Chronic retinal diseases such as retinal oedema or neovascularization usually require multiple intraocular injections to effectively treat the condition. However, the risks associated with these injections increase with repeated delivery of the drug. Therefore, alternative delivery methods need to be established in order to minimize the risks of reinjection. Several other investigations have developed methods to deliver drugs over extended time, through materials capable of releasing chemicals slowly into the eye. In this investigation, we outline the use of Elvax 40W, a copolymer resin, to act as a vehicle for drug delivery to the adult rat retina. The resin is made and loaded with the drug. The drug-resin complex is then implanted into the vitreous cavity, where it will slowly release the drug over time. This method was tested using 2-amino-4-phosphonobutyrate (APB), a glutamate analogue that blocks the light response of the retina. It was demonstrated that the APB was slowly released from the resin, and was able to block the retinal response by 7 days after implantation. This indicates that slow-release drug delivery using this copolymer resin is effective for treating the retina, and could be used therapeutically with further testing.  相似文献   

3.
Molecularly imprinted polymers for drug delivery   总被引:7,自引:0,他引:7  
Molecular imprinting technology has an enormous potential for creating satisfactory drug dosage forms. Although its application in this field is just at an incipient stage, the use of MIPs in the design of new drug delivery systems (DDS) and devices useful in closely related fields, such as diagnostic sensors, is receiving increasing attention. Examples of MIP-based DDS can be found for the three main approaches developed to control the moment at which delivery should begin and/or the drug release rate, i.e. rate-programmed, activation-modulated, or feedback-regulated drug delivery. The utility of these systems for administering drugs by different routes (e.g. oral, ocular or transdermal) or trapping undesired substances under in vivo conditions is discussed. This review seeks to highlight the more remarkable advantages of the imprinting technique in the development of new efficient DDS as well as pointing out some possibilities to adapt the synthesis procedures to create systems compatible with both the relative instable drug molecules, especially of peptide nature, and the sensitive physiological tissues with which MIP-based DDS would enter into contact when administered. The prospects for future development are also analysed.  相似文献   

4.
Developments of novel drug delivery vehicles are sought-after to augment the therapeutic effectiveness of standard drugs. An urgency to design novel drug delivery vehicles that are sustainable, biocompatible, have minimized cytotoxicity, no immunogenicity, high stability, long circulation time, and are capable of averting recognition by the immune system is perceived. In this pursuit for an ideal candidate for drug delivery vehicles, zwitterionic materials have come up as fulfilling almost all these expectations. This comprehensive review is presenting the progress made by zwitterionic polymeric architectures as prospective sustainable drug delivery vehicles. Zwitterionic polymers with varied architecture such as appending protein conjugates, nanoparticles, surface coatings, liposomes, hydrogels, etc, used to fabricate drug delivery vehicles are reviewed here. A brief introduction of zwitterionic polymers and their application as reliable drug delivery vehicles, such as zwitterionic polymer–protein conjugates, zwitterionic polymer-based drug nanocarriers, and stimulus-responsive zwitterionic polymers are discussed in this discourse. The prospects shown by zwitterionic architecture suggest the tremendous potential for them in this domain. This critical review will encourage the researchers working in this area and boost the development and commercialization of such devices to benefit the healthcare fraternity.  相似文献   

5.
The perspectives of using liposomes for delivery of drugs to desired parts of the human body have been intensively investigated for more than 30 years. During this time many inventions have been suggested and different kinds of liposomal devices developed, and a number of them have reached the stages of preclinical or clinical trials. The latest techniques can be used to develop biocompatible nano-sized liposomal containers having some abilities of artificial intellect, such as the presence of sensory and responsive units. However, only a few have been clinically approved. Further improvements in this area depend on our knowledge of the interactions of drugs with the lipid bilayer of liposomes. Further studies on liposomal transport through the human body, their targeting of cells requiring therapeutic treatment, and finally, the development of techniques for controlled drug delivery to desired acceptors on cell surfaces or in cytoplasm are still required.  相似文献   

6.
Nanotechnology is the development of engineered devices at the atomic, molecular and macromolecular level in nanometer range. Nanoparticles have potential application in medical field including diagnostics and therapeutics. Nanotechnology devices are being developed for diagnosis of cancer and infectious diseases which can help in early detection of the disease. Advances in nanotechnology also proved beneficial in therapeutic field such as drug discovery, drug delivery and gene/protein delivery. Nanoparticles can be constructed by various methodology so that effect can be targeted at desired site. In this review, some of the applications of nanoparticles in medicine as diagnostics and therapeutics which can be employed safely at the clinical level have been described. On other hand, as the particles become generally smaller their likehood of causing harm to the lung increases. Therefore, there is a need to study safety of nanoparticles.  相似文献   

7.
Magnetically controlled targeted micro-carrier systems   总被引:11,自引:0,他引:11  
P K Gupta  C T Hung 《Life sciences》1989,44(3):175-186
Magnetically controlled targeted drug delivery systems are aimed at concentrating drugs at a defined target site, with the aid of a magnetic field. This technique has been developed specifically for directing drugs away from the reticuloendothelial system (RES). Literature on this topic suggests that these delivery systems are capable of altering the distribution of chemotherapeutic agents in the body. Hence these delivery devices offer the possibility of improving the therapeutic efficacy of the associated drugs. This paper reviews the work done to date towards the development and evaluation of biodegradable and non-biodegradable magnetic targeted drug delivery systems and outlines their future prospects and limitations in cancer chemotherapy.  相似文献   

8.
Ophthalmic drug delivery to the posterior segment of the eye could benefit from a responsive controlled drug delivery system with light or laser inducible changes. For example, the delivery of age-related macular degeneration drugs requires invasive monthly injections making long-term photoresponsive drug delivery a desirable option. The feasibility of this may be facilitated by both the transparency of the eye and the advanced technology in ophthalmic lasers. Hyaluronic acid photogels that are compatible with retinal pigment epithelial cell lines are shown here to deliver a variety of small and large model drugs over the long term (months). Varying UV exposures resulted in decreases/increases or the turning off and on of delivery, potentially allowing the therapy to be tailored to suit the patient and the disease.  相似文献   

9.
In this paper, different electromigration methods used to monitor drugs and polymers released from drug delivery systems are reviewed. First, an introduction to the most typical arrangements used as drug delivery systems (e.g., polymer-drug covalent conjugates, membrane or matrix-based devices) is presented. Next, the principles of different capillary electromigration procedures are discussed, followed by a revision on the different procedures employed to monitor the release of drugs and the degradation or solubilization of the polymeric matrices from drug delivery systems during both in vitro and in vivo assays. A critical comparison between these capillary electrophoretic methods and the more common chromatographic methods employed to analyze drugs and polymers from drug delivery systems is presented. Finally, future outlooks of these electromigration procedures in the controlled release field are discussed.  相似文献   

10.
The release of a potent bone-resorption inhibitor such as zoledronate from a versatile drug delivery system such as SBA 15 has been modeled. The initial and boundary conditions have been defined, together with the system parameters, including the determination of equilibrium and transport parameters. Additionally, the experimental model of the same system has been observed to validate the prediction here developed. This approach represents a powerful tool for the designing of mesoporous implantable drug delivery systems because their release kinetics can be predicted in advance, and this leads to a considerable time and resources saving.  相似文献   

11.
Topical medication remains the first line treatment of glaucoma; however, sustained ocular drug delivery via topical administration is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Currently, daily topical administration for lowering the intra-ocular pressure (IOP), has many limitations, such as poor patient compliance and ocular allergy from repeated drug administration. Poor compliance leads to suboptimal control of IOP and disease progression with eventual blindness. The delivery of drugs in a sustained manner could provide the patient with a more attractive alternative by providing optimal therapeutic dosing, with minimal local toxicity and inconvenience. To investigate this, we incorporated latanoprost into LUVs (large unilamellar vesicles) derived from the liposome of DPPC (di-palmitoyl-phosphatidyl-choline) by the film hydration technique. Relatively high amounts of drug could be incorporated into this vesicle, and the drug resides predominantly in the bilayer. Vesicle stability monitored by size measurement and DSC (differential scanning calorimetry) analysis showed that formulations with a drug/lipid mole ratio of about 10% have good physical stability during storage and release. This formulation demonstrated sustained release of latanoprost in vitro, and then tested for efficacy in 23 rabbits. Subconjunctival injection and topical eye drop administration of the latanoprost/liposomal formulation were compared with conventional daily administration of latanoprost eye drops. The IOP lowering effect with a single subconjunctival injection was shown to be sustained for up to 50 days, and the extent of IOP lowering was comparable to daily eye drop administration. Toxicity and localized inflammation were not observed in any treatment groups. We believe that this is the first demonstration, in vivo, of sustained delivery to the anterior segment of the eye that is safe and efficacious for 50 days.  相似文献   

12.
Several critical ocular diseases that can lead to blindness are due to retinal disorders. Subretinal drug delivery has been developed recently for the treatment of retinal disorders such as hemorrhage because of the specific ocular structure, namely, the blood retinal barrier (BRB). In the present study, we developed an Arched Micro-injector (ARCMI) for subretinal drug delivery with minimal retinal tissue damage. ARCMIs were fabricated using three major techniques: reverse drawing lithography, controlled air flow, and electroplating. In order to achieve minimal retinal tissue damage, ARCMIs were fabricated with specific features such as a 0.15 mm−1 curvature, 45° tip bevel, 5 mm length, inner diameter of 40 µm, and an outer diameter of 100 µm. These specific features were optimized via in-vitro experiments in artificial ocular hemispherical structures and subretinal injection of indocyanine green in porcine eye ex-vivo. We confirmed that the ARCMI was capable of delivering ocular drugs by subretinal injection without unusual subretinal tissue damage, including hemorrhage.  相似文献   

13.
Colon targeting drug delivery systems have attracted many researchers due to the distinct advantages they present such as near neutral pH, longer transit time and reduced enzymatic activity. Moreover, in recent studies, colon specific drug delivery systems are gaining importance for use in the treatment of local pathologies of the colon and also for the systemic delivery of protein and peptide drugs.In previous works, our group has developed different types of hydrophilic matrices with grafted copolymers of starch and acrylic monomers with a wide range of physicochemical properties which have demonstrated their ability in controlled drug release. Since the cost of synthesizing a new polymeric substance and testing for its safety is enormous, polymer physical blends are frequently used as excipients in controlled drug delivery systems due to their versatility. So, the aim of this work is to combine two polymers which offer different properties such as permeability for water and drugs, pH sensitivity and biodegradability in order to further enhance the release performance of various drugs. It was observed that these physical blend matrices offer good controlled release of drugs, as well as of proteins and present suitable properties for use as hydrophilic matrices for colon-specific drug delivery.  相似文献   

14.
Small-scale systems for in vivo drug delivery   总被引:16,自引:0,他引:16  
Recent developments in the application of micro- and nanosystems for drug administration include a diverse range of new materials and methods. New approaches include the on-demand activation of molecular interactions, novel diffusion-controlled delivery devices, nanostructured 'smart' surfaces and materials, and prospects for coupling drug delivery to sensors and implants. Micro- and nanotechnologies are enabling the design of novel methods such as radio-frequency addressing of individual molecules or the suppression of immune response to a release device. Current challenges include the need to balance the small scale of the devices with the quantities of drugs that are clinically necessary, the requirement for more stable sensor platforms, and the development of methods to evaluate these new materials and devices for safety and efficacy.  相似文献   

15.
小干扰RNA (small interfering RNA,siRNA)是RNA干扰的引发物,激发与之互补的目标mRNA沉默,对基因调控及疾病治疗有重要意义。siRNA作为药物需要克服血管屏障、实现细胞内吞及溶酶体逃逸,同时还需要避免核酸酶作用下发生降解。因此,设计合适的纳米载体以帮助siRNA成功递送进细胞并发挥作用是目前siRNA药物发展的重要目标。纳米载体的材料种类、尺寸、结构、表面修饰等精确设计是实现siRNA药物成功递送的重要因素。随着研究的深入和应用的发展,siRNA药物纳米载体的精确控制制备、精准靶向递送及多功能化取得了较好的成果。本文围绕siRNA药物纳米载体,对siRNA药物应用及其递送困难、siRNA药物纳米载体主要设计策略、目前siRNA药物上市情况进行介绍,同时对其未来发展方向进行展望。  相似文献   

16.
Jiang B  Defusco E  Li B 《Biomacromolecules》2010,11(12):3630-3637
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.  相似文献   

17.
Drug delivery to the central nervous system (CNS) is complicated by the blood-brain barrier. As a result, many agents that are found to be potentially effective at their site of action cannot be sufficiently or effectively delivered to the CNS and therefore have been discarded and not developed further for clinical use, leaving many CNS diseases untreated. One way to overcome this obstacle is intracerebroventricular (ICV) delivery of the therapeutics directly to cerebrospinal fluid (CSF). Recent experimental and clinical findings reveal that CSF flows from the ventricles throughout the parenchyma towards the subarachnoid space also named minor CSF pathway, while earlier, it was suggested that only in pathological conditions such as hydrocephalus this form of CSF flow occurs. This transependymal flow of CSF provides a route to distribute ICV-infused drugs throughout the brain. More insight on transependymal CSF flow will direct more rational to ICV drug delivery and broaden its clinical indications in managing CNS diseases.  相似文献   

18.
In the past, most treatments for retinal diseases have been empirical. Steroids and/or laser photocoagulation and/or surgery have been tried for almost every condition with little or no understanding of the underlying disease. Over the past several years vision researchers have uncovered molecular components of processes, such as visual transduction and the visual cycle, that are critical for visual function, and identified other molecules that lead to dysfunction and disease processes such as neovascularization and macular edema. It is becoming clear that dysregulation of certain molecules can have major effects on retinal structure and function. Studies in animal models have suggested that inhibiting or augmenting levels of a single molecule can have major effects in complex disease processes. Although several molecules probably contribute to neovascularization and excessive vascular permeability in the eye, blockade of vascular endothelial growth factor (VEGF) has remarkable beneficial effects in animal models that have now been proven to apply to human diseases in clinical trials. Intraocular injection of VEGF antagonists has revolutionized the treatment of choroidal neovascularization (CNV) and macular edema and serves as a model of targeted ocular pharmacotherapy. Significant progress elucidating the molecular pathogenesis of several disease processes in the eye may soon lead to new treatments following the lead of VEGF antagonists. Initial treatments that provide benefit from frequent intraocular injections are likely to be followed by sustained delivery of drugs and/or prolonged protein delivery by gene transfer. The eye has entered the era of molecular therapy.  相似文献   

19.

Background

Pulmonary drug delivery is characterized by short onset times of the effects and an increased therapeutic ratio compared to oral drug delivery. This delivery route can be used for local as well as for systemic absorption applying drugs as single substance or as a fixed dose combination. Drugs can be delivered as nebulized aerosols or as dry powders. A screening system able to mimic delivery by the different devices might help to assess the drug effect in the different formulations and to identify potential interference between drugs in fixed dose combinations. The present study evaluates manual devices used in animal studies for their suitability for cellular studies.

Methods

Calu-3 cells were cultured submersed and in air-liquid interface culture and characterized regarding mucus production and transepithelial electrical resistance. The influence of pore size and material of the transwell membranes and of the duration of air-liquid interface culture was assessed. Compounds were applied in solution and as aerosols generated by MicroSprayer IA-1C Aerosolizer or by DP-4 Dry Powder Insufflator using fluorescein and rhodamine 123 as model compounds. Budesonide and formoterol, singly and in combination, served as examples for drugs relevant in pulmonary delivery.

Results and Conclusions

Membrane material and duration of air-liquid interface culture had no marked effect on mucus production and tightness of the cell monolayer. Co-application of budesonide and formoterol, applied in solution or as aerosol, increased permeation of formoterol across cells in air-liquid interface culture. Problems with the DP-4 Dry Powder Insufflator included compound-specific delivery rates and influence on the tightness of the cell monolayer. These problems were not encountered with the MicroSprayer IA-1C Aerosolizer. The combination of Calu-3 cells and manual aerosol generation devices appears suitable to identify interactions of drugs in fixed drug combination products on permeation.  相似文献   

20.
Despite the availability and application of more effective antihypertensive drugs over the past 3 decades, hypertension continues to be a major risk factor for the development of premature cardiovascular disease. Moreover, failure to elucidate the pathogenesis of essential hypertension, noncompliance, and difficulties in defining the appropriate level of blood pressure elevation requiring therapy, continue to mitigate against the adequate control of hypertension. Some of these problems may be overcome by the availability of depot forms of antihypertensive medication or implantable drug delivery systems, or by the use of several recently developed antihypertensive drugs. These include dopaminergic agonists, selective alpha-adrenergic agents, calcium antagonists, medullary neutral lipids, gamma-aminobutyric acid agonists, and inhibitors of renin or phenethylamine N-methyl-transferase. In addition, the potential involvement of morphinomimetic peptides, prostaglandins, tonin, and bradykinin in blood pressure control or certain hypertensive states suggests that drugs developed to block or potentiate the actions of these substances may have important therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号