首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream.  相似文献   

2.
During early human embryonic development, blood vessels are stimulated to grow, branch, and invade developing tissues and organs. Pluripotent human embryonic stem cells (hESCs) are endowed with the capacity to differentiate into cells of blood and lymphatic vessels. The present study aimed to follow vasculogenesis during the early stages of developing human vasculature and to examine whether human neovasculogenesis within teratomas generated in SCID mice from hESCs follows a similar course and can be used as a model for the development of human vasculature. Markers and gene profiling of smooth muscle cells and endothelial cells of blood and lymphatic vessels were used to follow neovasculogenesis and lymphangiogenesis in early developing human embryos (4-8 weeks) and in teratomas generated from hESCs. The involvement of vascular smooth muscle cells in the early stages of developing human embryonic blood vessels is demonstrated, as well as the remodeling kinetics of the developing human embryonic blood and lymphatic vasculature. In teratomas, human vascular cells were demonstrated to be associated with developing blood vessels. Processes of intensive remodeling of blood vessels during the early stages of human development are indicated by the upregulation of angiogenic factors and specific structural proteins. At the same time, evidence for lymphatic sprouting and moderate activation of lymphangiogenesis is demonstrated during these developmental stages. In the teratomas induced by hESCs, human angiogenesis and lymphangiogenesis are relatively insignificant. The main source of blood vessels developing within the teratomas is provided by the murine host. We conclude that the teratoma model has only limited value as a model to study human neovasculogenesis and that other in vitro methods for spontaneous and guided differentiation of hESCs may prove more useful.  相似文献   

3.
Flow in tubes and arteries--a comparison   总被引:4,自引:0,他引:4  
D W Liepsch 《Biorheology》1986,23(4):395-433
The cardiovascular circulatory system of the human body can be compared with a network of tubes. It consists of a pump and a system of branched vessels. The arteries transport the blood to the periphery in a manner similar to that of a water supply network. It is important to know what kind of forces act upon "fittings", bends and bifurcations. It is also essential to assess whether the flow is laminar or turbulent, attached or separated. The flow should be optimized in such a manner as to minimize the drop in pressure. This means that no additional pressure loss due to separation or turbulence should occur, since such losses increase the pump power requirements. The loss appears in heating and acoustic energy. The necessary understanding of blood flow in human vessels is also of great interest to physicians since it is believed that the local flow behavior of blood determines the formation of atherosclerotic plaques. As in tubing systems, deposits in blood vessels are found close to bends and bifurcations. These deposits lead to impaired cerebral circulation and to myocardial infarction. A partial review of recent research into the details of flow behavior (like separation, stagnation and reattachment points) in bends and bifurcations of arterial models is presented. Studies involving steady and pulsatile flow conditions in rigid and elastic models with Newtonian and non-Newtonian fluids are shown here. The most important differences between blood vessels and tubes are discussed. This modern biofluidmechanical approach of detailed flow examination is compared with the more classical hemodynamic approach considering only gross features such as pressure loss coefficients.  相似文献   

4.
Fluorescent proteins have the properties of being very bright with high quantum yield and are available in many colors. Tumor-host models consist of transgenic mice expressing green fluorescent protein (GFP) in essentially all cells and tissues or expressing GFP selectively in specific tissues such as blood vessels. Particularly useful are the corresponding nude mice transgenic for GFP expression, as they can accept human tumors. When tumor cells expressing red fluorescent protein are implanted in mice expressing GFP, various types of tumor-host interactions can be observed, including those involving host blood vessels, lymphocytes, tumor-associated fibroblasts, macrophages, dendritic cells and others. The 'color-coded' tumor-host models enable imaging and therefore a deeper understanding of the host cells involved and their function in tumor progression. Approximately 4-8 weeks are needed for these procedures.  相似文献   

5.
Human tissue-engineered blood vessels for adult arterial revascularization   总被引:7,自引:0,他引:7  
There is a crucial need for alternatives to native vein or artery for vascular surgery. The clinical efficacy of synthetic, allogeneic or xenogeneic vessels has been limited by thrombosis, rejection, chronic inflammation and poor mechanical properties. Using adult human fibroblasts extracted from skin biopsies harvested from individuals with advanced cardiovascular disease, we constructed tissue-engineered blood vessels (TEBVs) that serve as arterial bypass grafts in long-term animal models. These TEBVs have mechanical properties similar to human blood vessels, without relying upon synthetic or exogenous scaffolding. The TEBVs are antithrombogenic and mechanically stable for 8 months in vivo. Histological analysis showed complete tissue integration and formation of vasa vasorum. The endothelium was confluent and positive for von Willebrand factor. A smooth muscle-specific alpha-actin-positive cell population developed within the TEBV, suggesting regeneration of a vascular media. Electron microscopy showed an endothelial basement membrane, elastogenesis and a complex collagen network. These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individual's own cells.  相似文献   

6.
Heat transport mechanisms in vascular tissues: a model comparison   总被引:2,自引:0,他引:2  
We have conducted a parametric comparison of three different vascular models for describing heat transport in tissue. Analytical and numerical methods were used to predict the gross temperature distribution throughout the tissue and the small-scale temperature gradients associated with thermally significant blood vessels. The models are: an array of unidirectional vessels, an array of countercurrent vessels, and a set of large vessels feeding small vessels which then drain into large vessels. We show that three continuum formulations of bioheat transfer (directed perfusion, effective conductivity, and a temperature-dependent heat sink) are limiting cases of the vascular models with respect to the thermal equilibration length of the vessels. When this length is comparable to the width of the heated region of tissue, the local temperature changes near the vessels can be comparable to the gross temperature elevation. These results are important to the use of thermal techniques used to measure the blood perfusion rate and in the treatment of cancer with local hyperthermia.  相似文献   

7.
Wedge biopsy of the caudal borders of the parotid or submandibular salivary glands of rhesus monkeys avoids major nerves, ducts, and blood vessels. This is a minor surgical procedure that provides adequate material for in vitro studies and causes no significant postoperative complications. Gross and light microscopic anatomy of the rhesus and human salivary glands are similar. We have concluded that rhesus monkeys are good models for human salivary diseases, including radiation sialoadenitis.  相似文献   

8.
Studies of the origin of pulmonary blood flow heterogeneity have highlighted the significant role of vessel branching structure on flow distribution. To enable more detailed investigation of structure-function relationships in the pulmonary circulation, an anatomically based finite element model of the arterial and venous networks has been developed to more accurately reflect the geometry found in vivo. Geometric models of the arterial and venous tree structures are created using a combination of multidetector row X-ray computed tomography imaging to define around 2,500 vessels from each tree, a volume-filling branching algorithm to generate the remaining accompanying conducting vessels, and an empirically based algorithm to generate the supernumerary vessel geometry. The explicit generation of supernumerary vessels is a unique feature of the computational model. Analysis of branching properties and geometric parameters demonstrates close correlation between the model geometry and anatomical measures of human pulmonary blood vessels. A total of 12 Strahler orders for the arterial system and 10 Strahler orders for the venous system are generated, down to the equivalent level of the terminal bronchioles in the bronchial tree. A simple Poiseuille flow solution, assuming rigid vessels, is obtained within the arterial geometry of the left lung, demonstrating a large amount of heterogeneity in the flow distribution, especially with inclusion of supernumerary vessels. This model has been constructed to accurately represent available morphometric data derived from the complex asymmetric branching structure of the human pulmonary vasculature in a form that will be suitable for application in functional simulations.  相似文献   

9.
Several three-dimensional vascular models have been developed to study the effects of adding equations for large blood vessels to the traditional bioheat transfer equation of Pennes when simulating tissue temperature distributions. These vascular models include "transiting" vessels, "supplying" arteries, and "draining" veins, for all of which the mean temperature of the blood in the vessels is calculated along their lengths. For the supplying arteries this spatially variable temperature is then used as the arterial temperature in the bioheat transfer equation. The different vascular models produce significantly different locations for both the maximum tumor and the maximum normal tissue temperatures for a given power deposition pattern. However, all of the vascular models predict essentially the same cold regions in the same locations in tumors: one set at the tumors' corners and another around the inlets of the large blood vessels to the tumor. Several different power deposition patterns have been simulated in an attempt to eliminate these cold regions; uniform power in the tumor, annular power in the tumor, preheating of the blood in the vessels while they are traversing the normal tissue, and an "optimal" power pattern which combines the best features of the above approaches. Although the calculations indicate that optimal power deposition patterns (which improve the temperature distributions) exist for all of the vascular models, none of the heating patterns studied eliminated all of the cold regions. Vasodilation in the normal tissue is also simulated to see its effects on the temperature fields.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Relatively limited information is available regarding the mechanisms controlling vasomotricity in human vessels. Isolated vessels obtained from patients undergoing surgery were used to characterize the role of endothelial factors and to study coupling mechanisms between receptors, intracellular calcium, and contraction. However, these investigations are limited by the availability of tissues and many uncontrolled factors. Cultured human vascular cells were also used, were these cells rapidly lose at least some of their differentiated characters. Recently, a human blood vessel equivalent was constructed in vitro from cultured cells, using tissue engineering. This technique allowed us to obtain vessel equivalents containing intima, media, and adventitia layers or tubular media layer only. Contraction and rises in intracellular calcium produced by agonists were studied, indicating that such human vessel equivalents may provide valuable models for pharmacological studies.  相似文献   

11.
The aim of the present study was to determine millimeter wave (MMW) absorption by blood vessels traversing the subcutaneous fat layer of murine skin. Most calculations were performed using the finite-difference time-domain (FDTD) technique. We used two types of models: (1) a rectangular block of multilayer tissue with blood vessels traversing the fat layer and (2) cylindrical models with circular and elliptical cross-sections simulating the real geometry of murine limbs. We found that the specific absorption rate (SAR) in blood vessels normally traversing the fat layer achieved its maximal value at the parallel orientation of the E-field to the vessel axis. At 42 GHz exposure, the maximal SAR in small blood vessels could be more than 30 times greater than that in the skin. The SAR increased with decreasing the blood vessel diameter and increasing the fat thickness. The SAR decreased with increasing the exposure frequency. When the cylindrical or elliptical models of murine limbs were exposed to plane MMW, the greatest absorption of MMW energy occurred in blood vessels located on the lateral areas of the limb model. At these areas the maximal SAR values were comparable with or were greater than the maximal SAR on the front surface of the skin. Enhanced absorption of MMW energy by blood vessels traversing the fat layer may play a primary role in initiating MMW effects on blood cells and vasodilatation of cutaneous blood vessels.  相似文献   

12.

Biological tissues receive oxygen and nutrients from blood vessels by developing an indispensable supply and demand relationship with the blood vessels. We implemented a synthetic tree generation algorithm by considering the interactions between the tissues and blood vessels. We first segment major arteries using medical image data and synthetic trees are generated originating from these segmented arteries. They grow into extensive networks of small vessels to fill the supplied tissues and satisfy the metabolic demand of them. Further, the algorithm is optimized to be executed in parallel without affecting the generated tree volumes. The generated vascular trees are used to simulate blood perfusion in the tissues by performing multiscale blood flow simulations. One-dimensional blood flow equations were used to solve for blood flow and pressure in the generated vascular trees and Darcy flow equations were solved for blood perfusion in the tissues using a porous model assumption. Both equations are coupled at terminal segments explicitly. The proposed methods were applied to idealized models with different tree resolutions and metabolic demands for validation. The methods demonstrated that realistic synthetic trees were generated with significantly less computational expense compared to that of a constrained constructive optimization method. The methods were then applied to cerebrovascular arteries supplying a human brain and coronary arteries supplying the left and right ventricles to demonstrate the capabilities of the proposed methods. The proposed methods can be utilized to quantify tissue perfusion and predict areas prone to ischemia in patient-specific geometries.

  相似文献   

13.
Testing new antiangiogenic drugs for cancer treatment requires the use of animal models, since stromal cells and extracellular matrices mediate signals to endothelial cells that cannot be fully reproduced in vitro. Most methods used for analysis of antiangiogenic drugs in vivo utilized histologic examination of tissue specimens, which often requires large sample sizes to obtain reliable quantitative data. Furthermore, these assays rely on the analysis of murine vasculature that may not be correlated with the responses of human endothelial cells. Here, we engineered human blood vessels in immunodeficient mice with human endothelial cells expressing luciferase, demonstrated that these cells line functional blood vessels, and quantified angiogenesis over time using a photon counting-based method. In a proof-of-principle experiment with PTK/ZK, a small molecule inhibitor of vascular endothelial growth factor (VEGF) tyrosine kinase receptors, a strong correlation was observed between the decrease in bioluminescence (9.12-fold) in treated mice and the actual decrease in microvessel density (9.16-fold) measured after retrieval of the scaffolds and immunohistochemical staining of endothelial cells. The method described here allows for quantitative and noninvasive investigation into the effects of anti-cancer drugs on human angiogenesis in a murine host.  相似文献   

14.
Mechanical stresses influence the structure and function of adult and developing blood vessels. When these stresses are perturbed, the vessel wall remodels to return the stresses to homeostatic levels. Constrained mixture models have been used to predict remodeling of adult vessels in response to step changes in blood pressure, axial length and blood flow, but have not yet been applied to developing vessels. Models of developing blood vessels are complicated by continuous and simultaneous changes in the mechanical forces. Understanding developmental growth and remodeling is important for treating human diseases and designing tissue-engineered blood vessels. This study presents a constrained mixture model for postnatal development of mouse aorta with multiple step increases in pressure, length and flow. The baseline model assumes that smooth muscle cells (SMCs) in the vessel wall immediately constrict or dilate the inner radius after a perturbation to maintain the shear stress and then remodel the wall thickness to maintain the circumferential stress. The elastin, collagen and SMCs have homeostatic stretch ratios and passive material constants that do not change with developmental age. The baseline model does not predict previously published experimental data. To approximate the experimental data, it must be assumed that the SMCs dilate a constant amount, regardless of the step change in mechanical forces. It must also be assumed that the homeostatic stretch ratios and passive material constants change with age. With these alterations, the model approximates experimental data on the mechanical properties and dimensions of aorta from 3- to 30-day-old mice.  相似文献   

15.
Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier–Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human–technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.  相似文献   

16.
Imaging of angiogenesis: from microscope to clinic   总被引:24,自引:0,他引:24  
Advances in imaging are transforming our understanding of angiogenesis and the evaluation of drugs that stimulate or inhibit angiogenesis in preclinical models and human disease. Vascular imaging makes it possible to quantify the number and spacing of blood vessels, measure blood flow and vascular permeability, and analyze cellular and molecular abnormalities in blood vessel walls. Microscopic methods ranging from fluorescence, confocal and multiphoton microscopy to electron microscopic imaging are particularly useful for elucidating structural and functional abnormalities of angiogenic blood vessels. Magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), ultrasonography and optical imaging provide noninvasive, functionally relevant images of angiogenesis in animals and humans. An ongoing dilemma is, however, that microscopic methods provide their highest resolution on preserved tissue specimens, whereas clinical methods give images of living tissues deep within the body but at much lower resolution and specificity and generally cannot resolve vessels of the microcirculation. Future challenges include developing new imaging methods that can bridge this resolution gap and specifically identify angiogenic vessels. Another goal is to determine which microscopic techniques are the best benchmarks for interpreting clinical images. The importance of angiogenesis in cancer, chronic inflammatory diseases, age-related macular degeneration and reversal of ischemic heart and limb disease provides incentive for meeting these challenges.  相似文献   

17.
The human adult liver has a multi‐cellular structure consisting of large lobes subdivided into lobules containing portal triads and hepatic cords lined by specialized blood vessels. Vital hepatic functions include filtering blood, metabolizing drugs, and production of bile and blood plasma proteins like albumin, among many other functions, which are generally dependent on the location or zone in which the hepatocyte resides in the liver. Due to the liver's intricate structure, there are many challenges to design differentiation protocols to generate more mature functional hepatocytes from human stem cells and maintain the long‐term viability and functionality of primary hepatocytes. To this end, recent advancements in three‐dimensional (3D) stem cell culture have accelerated the generation of a human miniature liver system, also known as liver organoids, with polarized epithelial cells, supportive cell types and extra‐cellular matrix deposition by translating knowledge gained in studies of animal organogenesis and regeneration. To facilitate the efforts to study human development and disease using in vitro hepatic models, a thorough understanding of state‐of‐art protocols and underlying rationales is essential. Here, we review rapidly evolving 3D liver models, mainly focusing on organoid models differentiated from human cells.  相似文献   

18.
During laser-assisted photo-thermal therapy, the temperature of the heated tissue region must rise to the therapeutic value (e.g., 43 °C) for complete ablation of the target cells. Large blood vessels (larger than 500 micron in diameter) at or near the irradiated tissues have a considerable impact on the transient temperature distribution in the tissue. In this study, the cooling effects of large blood vessels on temperature distribution in tissues during laser irradiation are predicted using finite element based simulation. A uniform flow is assumed at the entrance and three-dimensional conjugate heat transfer equations in the tissue region and the blood region are simultaneously solved for different vascular models. A volumetric heat source term based on Beer–Lambert law is introduced into the energy equation to account for laser heating. The heating pattern is taken to depend on the absorption and scattering coefficients of the tissue medium. Experiments are also conducted on tissue mimics in the presence and absence of simulated blood vessels to validate the numerical model. The coupled heat transfer between thermally significant blood vessels and their surrounding tissue for three different tissue-vascular networks are analyzed keeping the laser irradiation constant. A surface temperature map is obtained for different vascular models and for the bare tissue (without blood vessels). The transient temperature distribution is seen to differ according to the nature of the vascular network, blood vessel size, flow rate, laser spot size, laser power and tissue blood perfusion rate. The simulations suggest that the blood flow through large blood vessels in the vicinity of the photothermally heated tissue can lead to inefficient heating of the target.  相似文献   

19.
The stability of blood vessel under lumen pressure load is essential to the maintenance of normal arterial function. Previous mechanical models showed that blood vessels may buckle into a half sine wave but arteries and veins in vivo often demonstrate tortuous paths with multiple waves. The objective of this study was to analyze the buckling of blood vessels under lumen pressure with surrounding tissue support. Blood vessels were modeled as elastic cylindrical vessels within an elastic substrate. Buckling equations were established to determine the critical pressure and the wavelength. These equations and simulation results demonstrated that blood vessels do take higher order mode shapes when buckling inside an elastic substrate while they take the basal mode shape without the substrate. The wave number increases i.e. blood vessels take a higher mode shape, as the stiffness of the substrate increases. These results suggest that mechanical buckling is a possible mechanism for the development of tortuous blood vessels. The current model provides a powerful tool for further studying the tortuosity of arteries and veins.  相似文献   

20.

Background

Valuable insights into the complex process of retinal vascular development can be gained using models with abnormal retinal vasculature. Two such models are the recently described mouse lines with mutations in Lama1, an important component of the retinal internal limiting membrane (ILM). These mutants have a persistence of the fetal vasculature of vitreous (FVV) but lack a primary retinal vascular plexus. The present study provides a detailed analysis of astrocyte and vascular development in these Lama1 mutants.

Results

Although astrocytes and blood vessels initially migrate into Lama1 mutant retinas, both traverse the peripapillary ILM into the vitreous by P3. Once in the vitreous, blood vessels anastomose with vessels of the vasa hyaloidea propria, part of the FVV, and eventually re-enter the retina where they dive to form the inner and outer retinal capillary networks. Astrocytes continue proliferating within the vitreous to form a dense mesh that resembles epiretinal membranes associated with persistent fetal vasculature and proliferative vitreoretinopathy.

Conclusions

Lama1 and a fully intact ILM are required for normal retinal vascular development. Mutations in Lama1 allow developing retinal vessels to enter the vitreous where they anastomose with vessels of the hyaloid system which persist and expand. Together, these vessels branch into the retina to form fairly normal inner retinal vascular capillary plexi. The Lama1 mutants described in this report are potential models for studying the human conditions persistent fetal vasculature and proliferative vitreoretinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号