首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硫化氢是新的气体信号分子,在多种疾病中有重要的保护作用。脂肪组织表达胱硫醚β合酶、胱硫醚γ裂解酶以及β-巯基丙酮酸转硫酶并产生释放硫化氢。脂肪组织内源性硫化氢可调节脂肪糖摄取和利用、脂肪分解、脂肪细胞分化以及脂肪内分泌,从而参与肥胖、糖尿病以及心血管疾病的调节。硫化氢可激活胰岛素受体信号、激活过氧化物增殖体活化受体γ、调控钾离子通道参与调节过程。硫化氢可能作为能量代谢的"开关",参与代谢性疾病的调节。  相似文献   

2.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

3.
H2S (hydrogen sulfide) has recently been recognized as a signalling molecule as well as a cytoprotectant. We recently demonstrated that 3MST (3-mercaptopyruvate sulfurtransferase) produces H2S from 3MP (3-mercaptopyruvate). Although a reducing substance is required for an intermediate persulfide at the active site of 3MST to release H2S, the substance has not been identified. In the present study we show that Trx (thioredoxin) and DHLA (dihydrolipoic acid) associate with 3MST to release H2S. Other reducing substances, such as NADPH, NADH, GSH, cysteine and CoA, did not have any effect on the reaction. We also show that 3MST produces H2S from thiosulfate. The present study provides a new insight into a mechanism for the production of H2S by 3MST.  相似文献   

4.
Hideo Kimura 《Amino acids》2011,41(1):113-121
Hydrogen sulfide (H2S), which is a well-known toxic gas, has been recognized as a signal molecule as well as a cytoprotectant. It is produced by three enzymes, cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase. In addition to an immediate release of H2S from producing enzymes, it can be stored as bound sulfane sulfur, which may release H2S in response to physiological stimuli. As a signal molecule, it modulates neuronal transmission, relaxes smooth muscle, regulates release of insulin and is involved in inflammation. Because of its reputation as a toxic gas, the function as a cytoprotectant has been overlooked: the nervous system and cardiovascular system are protected from oxidative stress. In this review, enzymatic production, release mechanism and functions of H2S are focused on.  相似文献   

5.
Abstract— The concentration of cystathionine, along with the specific activities of the enzymes involved in its synthesis and degradation, cystathionine synthasc and cystathionase, respectively, have been measured in brain, liver and kidney of the developing Rhesus monkey from mid-gestation, through birth and neonatal life, to maturity. The concentration of cystathionine and the specific activity of cystathionine synthase are low in fetal brain. Both parameters increase slowly after birth and reach values found in adult brain at approx 3 months of postnatal age. The activity of cystathionase in brain is low throughout development.
Liver provides a direct contrast in that the concentration of cystathionine and the specific activity of cystathionine synthase are high in the fetus, decreasing rapidly after birth to values found in the adult by 2 weeks of postnatal age. Cystathionase activity is low in fetal liver and increases slowly after birth reaching values found in adult liver after 2–3 months. Kidney has no more than trace amounts of cystathionine throughout development, higher activity of cystathionine synthase in the fetus than in the adult and high, unchanged activity of cystathionase throughout the period of development studied.
These results indicate that the high concentrations of cystathionine found in primate brain are reached postnatally and suggest that this high concentration of cystathionine may be associated with the functioning of mature brain.  相似文献   

6.
Hydrogen sulfide (H(2)S) has recently been recognized as a signaling molecule as well as a cytoprotectant. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are well-known as H(2)S-producing enzymes. We recently demonstrated that 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT) produces H(2)S in the brain and in vascular endothelium. However, the cellular distribution and regulation of these enzymes are not well understood. Here we show that 3MST and CAT are localized to retinal neurons and that the production of H(2)S is regulated by Ca(2+); H(2)S, in turn, regulates Ca(2+) influx into photoreceptor cells by activating vacuolar type H(+)-ATPase (V-ATPase). We also show that H(2)S protects retinal neurons from light-induced degeneration. The excessive levels of light exposure deteriorated photoreceptor cells and increased the number of TUNEL- and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells. Degeneration was greatly suppressed in the retina of mice administered with NaHS, a donor of H(2)S. The present study provides a new insight into the regulation of H(2)S production and the modulation of the retinal transmission by H(2)S. It also shows a cytoprotective effect of H(2)S on retinal neurons and provides a basis for the therapeutic target for retinal degeneration.  相似文献   

7.
Hydrogen sulfide (H(2)S) has recently been identified as a regulator of various physiological events, including vasodilation, angiogenesis, antiapoptotic, and cellular signaling. Endogenously, H(2)S is produced as a metabolite of homocysteine (Hcy) by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). Although Hcy is recognized as vascular risk factor at an elevated level [hyperhomocysteinemia (HHcy)] and contributes to vascular injury leading to renovascular dysfunction, the exact mechanism is unclear. The goal of the current study was to investigate whether conversion of Hcy to H(2)S improves renovascular function. Ex vivo renal artery culture with CBS, CSE, and 3MST triple gene therapy generated more H(2)S in the presence of Hcy, and these arteries were more responsive to endothelial-dependent vasodilation compared with nontransfected arteries treated with high Hcy. Cross section of triple gene-delivered renal arteries immunostaining suggested increased expression of CD31 and VEGF and diminished expression of the antiangiogenic factor endostatin. In vitro endothelial cell culture demonstrated increased mitophagy during high levels of Hcy and was mitigated by triple gene delivery. Also, dephosphorylated Akt and phosphorylated FoxO3 in HHcy were reversed by H(2)S or triple gene delivery. Upregulated matrix metalloproteinases-13 and downregulated tissue inhibitor of metalloproteinase-1 in HHcy were normalized by overexpression of triple genes. Together, these results suggest that H(2)S plays a key role in renovasculopathy during HHcy and is mediated through Akt/FoxO3 pathways. We conclude that conversion of Hcy to H(2)S by CBS, CSE, or 3MST triple gene therapy improves renovascular function in HHcy.  相似文献   

8.
Hydrogen sulfide (H(2)S) has been established as the third gaseous signaling molecule following nitric oxide and carbon monoxide and participates in a variety of cellular functions such as modulation of neuronal transmission, endothelium-dependent vasorelaxation, stimulation of angiogenesis and regulation of insulin release. Although cystathionine β-synthase and cystathionine γ-lyase have been regarded as the main producers of H(2)S in many tissues including brain, liver and kidney, Kimura and his colleagues have recently communicated that 3-mercaptopyruvate sulphurtransferase coupled with cysteine (aspartate) aminotransferase is responsible for the production of H(2)S in the vascular endothelium of the thoracic aorta [Shibuya et al. (2009) J. Biochem. 146, 623-626]. This finding provides a new insight into the production of the physiologically important signaling molecule.  相似文献   

9.
The level of glutathione and sulfane sulfur and sulfurtransferases activity in adult frogs Rana ridibunda were investigated after the exposure to 40 mg or 80 mg CdCl(2) L(-1) for 96 h or 240 h. Cd accumulation in the liver, kidneys and testes was confirmed, and the highest Cd level was found in the testes. In the liver, the exposure to Cd resulted in an increase of GSH level and the activity of rhodanese, while the activity of 3-mercaptopyruvate sulfurtransferase and cystathionase decreased. The kidneys and brain showed the elevated level of GSH and the activity of all investigated sulfurtransferases, as well as sulfane sulfur especially in brain. In such tissues as the testes, muscles and heart, the level of GSH and the activity of 3-mercaptopyruvate sulfurtransferase were significantly diminished. The increased level of sulfane sulfur was determined in the testes and muscles and the increased activity of rhodanese in the testes and the heart. These findings suggest the possible role of sulfane sulfur and/or sulfurtransferases in the antioxidation processes, which can be generated in cells by cadmium.  相似文献   

10.
Research in the last two decades has transformed the way hydrogen sulphide (H2S) is perceived from a noxious gas to a gaso-transmitter with a vast potential in pharmacotherapy. H2S is synthesized in various body-systems using the enzymes cystathionine beta-synthase and cystathionine gamma-lyase; either of these being the predominat enzyme in a particular system. H2S may be one of the physiological modulators of blood pressure in humans. The gas relaxes the vascular smooth muscle cells by opening up K(ATP) channels. Moreover, it suppresses the proliferation of vascular smooth muscle cells. H2S may also be contributing in the protection afforded by ischaemia-preconditioning. Testosterone is thought to be responsible for the higher central nervous system level of H2S in males. In the central nervous system, H2S is implicated in Alzheimer's disease, epilepsy, stroke and Down's syndrome. Insulin secretion is associated with a decrease in the H2S levels. Raised H2S is detrimental in acute pancreatitis as well as in septic shock. Recently, H2S-releasing derivatives of certain drugs have shown promise in protection against gastric ulcer and in inflammatory bowel disease. The beneficial effects of certain sulphur containing herbs like ginseng and garlic may be mediated via H2S. In future, development of specific drugs modulating H2S levels may prove beneficial in varied disorders.  相似文献   

11.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

12.
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.  相似文献   

13.
Sulfurtransferases transfer a sulfane atom from a donor substrate to a thiophilic acceptor molecule. Recently a sulfurtransferase specific for the substrate 3-mercaptopyruvate was isolated from Arabidopsis thaliana [Papenbrock, J. & Schmidt, A. (2000) Eur. J. Biochem. 267, 145-154]. In this study a second sulfurtransferase from Arabidopsis was characterized and compared to the enzyme described previously. Sequences of the mature proteins had an identity of 77.7%. The plant sulfurtransferases formed a distinct group within the known eukaryotic sulfurtransferases. When Southern blots were hybridized with labelled cDNA fragments from each of the plant sulfurtransferases the same pattern of bands was obtained indicating the existence of only these two closely related sulfurtransferases. The new sulfurtransferase was expressed in Escherichia coli fused with an N-terminal His6-tag, purified and tested for enzyme activity. Like the first enzyme, the newly isolated protein preferred 3-mercaptopyruvate to thiosulfate as substrate. The Km of both enzymes determined for 3-mercaptopyruvate and cyanide were almost identical. As a result of database searches it became obvious that sulfurtransferase proteins from higher plants showed high similarities to small senescence- and stress-induced proteins. To prove the involvement of sulfurtransferases in senescence-associated processes 3-mercaptopyruvate sulfurtransferase activity was determined in crude protein extracts from Arabidopsis plants of different ages. 3-mercaptopyruvate sulfurtransferase activity and steady-state RNA levels of sulfurtransferases increased with increasing age. However, steady-state protein levels as measured by using an antibody against the sulfurtransferase protein expressed previously decreased. Putative roles of sulfurtransferases in senescence-associated processes are discussed.  相似文献   

14.
The phosphopyridoxyl peptides of beta cystathionase and cystathionine gamma synthase of Escherichia Coli were identified after reduction, carboxymethylation and proteolysis of the holoenzymes. Their comparison with those obtained from rat liver gamma cystathionase (Fearon, C.W., Rodkey, J.A. and Abeles R.H. 1982. Biochemistry 21 3790-3794.) showed a high degree of homology between the three PLP binding sites with the presence of the tripeptide sequence: Thr-Lys(Pxy)-Tyr in their structure. This homology suggests that these enzymes of methionine metabolism have probably the same origin.  相似文献   

15.
Nagahara N  Sawada N  Nakagawa T 《Biochimie》2004,86(9-10):723-729
A bisubstrate enzyme, rat mercaptopyruvate sulfurtransferase (EC 2.8.1.2), is inactivated by 3-chloropyruvate, an analog of 3-mercaptopyruvate serving as a sulfur-donor and -acceptor substrate. To elucidate a reaction mechanism of the enzyme, the inactivation kinetic studies using 3-chloropyruvate were carried out. However, 3-chloropyruvate cannot be mixed with 3-mercaptopyruvate, 2-mercaptoethanol and thiosulfate because these substrates decompose 3-chloropyruvate. Thus, 3-mercaptopyruvate sulfurtransferase was incubated with 3-chloropyruvate, and then the remaining activity was measured separately in the assay system containing 3-mercaptopyruvate and 2-mercaptoethanol. The inactivation kinetics was analyzed by Kitz and Wilson method (J. Biol. Chem. 237 (1962) 3245-3248). The inactivation of mercaptopyruvate sulfurtransferase by 3-chloropyruvate proceeded in one-on-one manner and exhibited pseudo first-order kinetics with k(inact) = 0.068 +/- 0.003 min(-1) and K(I) = 4.0 +/- 0.2 mM (n = 3, mean +/- S.D.). Further, SH titration using DTNB revealed that MST was inactivated by 3-chloropyruvate in a 1:1 stoichiometry. Site-directed mutagenesis for binding sites of 3-mercaptopyruvate (Arg(187)-->Gly or Arg(196)-->Gly) (J. Biol. Chem. 271 (1996) 27395-27401) did not critically affect the inactivation. These findings suggest that 3-chloropyruvate behaves as an affinity label and directly tags the catalytic site, Cys(247). An ESI-LC/Q-TOF mass spectrometric study suggests that a pyruvate adduct is formed at Cys(247), which mimics a reaction intermediate.  相似文献   

16.
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238). In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese). The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate.  相似文献   

17.
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238). In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese). The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate.  相似文献   

18.
The contribution of cystathionine gamma-lyase, cystathionine beta-synthase and cysteine aminotransferase coupled to 3-mercaptopyruvate sulphurtransferase to cysteine desulphhydration in rat liver and kidney was assessed with four different assay systems. Cystathionine gamma-lyase and cystathionine beta-synthase were active when homogenates were incubated with 280 mM-L-cysteine and 3 mM-pyridoxal 5'-phosphate at pH 7.8. Cysteine aminotransferase in combination with 3-mercaptopyruvate sulphurtransferase catalysed essentially all of the H2S production from cysteine at pH 9.7 with 160 mM-L-cysteine, 2 mM-pyridoxal 5'-phosphate, 3 mM-2-oxoglutarate and 3 mM-dithiothreitol. At more-physiological concentrations of cysteine (2 mM) cystathionine gamma-lyase and cystathionine beta-synthase both appeared to be active in cysteine desulphhydration, whereas the aminotransferase pathway did not. The effect of inhibition of cystathionine gamma-lyase by a suicide inactivator, propargylglycine, in the intact rat was also investigated; there was no significant effect of propargylglycine administration on the urinary excretion of total 35S, 35SO4(2-) or [35S]taurine formed from labelled dietary cysteine.  相似文献   

19.
Summary We have studied the transamination pathway (3-mercaptopyruvate pathway) ofl-cysteine metabolism in rats. Characterization of cysteine aminotransferase (EC 2.6.1.3) from liver indicated that the transamination, the first reaction of this pathway, was catalyzed by aspartate aminotransferase (EC 2.6.1.1). 3-Mercaptopyruvate, the product of the transamination, may be metabolized through two routes. The initial reactions of these routes are reduction and transsulfuration, and the final metabolites are 3-mercaptolactate-cysteine mixed disulfide [S-(2-hydroxy-2-carboxyethylthio)cysteine, HCETC] and inorganic sulfate, respectively. The study using anti-lactate dehydrogenase antiserum proved that the enzyme catalyzing the reduction of 3-mercaptopyruvate was lactate dehydrogenase (EC 1.1.1.27). Formation of HCETC was shown to depend on low 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) activity. Results were discussed in relation to HCETC excretion in normal human subjects and patients with 3-mercaptolactate-cysteine disulfiduria. Incubation of liver mitochondria withl-cysteine, 2-oxoglutarate and glutathione resulted in the formation of sulfate and thiosulfate, indicating that thiosulfate was formed by transsulfuration of 3-mercaptopyruvate and finally metabolized to sulfate.  相似文献   

20.
Hydrogen sulfide as a neuromodulator   总被引:28,自引:0,他引:28  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号