首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Genomic organization of the rat inward rectifier K(+) channel Kir7.1 was determined in an attempt to clarify how multiple species of its mRNA are generated in a tissue-specific manner and how its expression is regulated. The rat Kir7.1 gene spans >40 kilobases (kb) and consists of eight exons; the first four exons encode the 5'-untranslated region that is unusually long ( approximately 3 kb). The coding region is located in exons 5 and 6. In the testis, exon 4 is processed as four exons (4a-4d), whereas it is recognized as a single exon in the small intestine. The three major species of rat Kir7.1 mRNA (1.4, 2.2, and 3.2 kb) were found to arise from alternative usage of the two promoters and polyadenylation signals and by alternative splicing of the 5'-noncoding exons. The splicing pattern of the 5'-noncoding exons is quite complex and highly tissue-specific, suggesting that complex mechanisms may operate to regulate the Kir7.1 expression. Deletion and mutational analysis of the promoter activity indicated that the rat Kir7.1 gene is regulated by cAMP through a CCAAT element. The cAMP induction was also demonstrated using the rat follicular cell line FRTL-5 endogenously expressing Kir7.1.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential scaffolding protein required to recruit the 43 S complex to the 5'-end of mRNA during translation initiation. We have previously demonstrated that eIF4GI protein expression is translationally regulated. This regulation is mediated by cis-acting RNA elements, including an upstream open reading frame and an IRES that directs synthesis of five eIF4GI protein isoforms via alternative AUG initiation codon selection. Here, we further characterize eIF4GI IRES function and show that eIF4GI is expressed from several distinct mRNAs that vary via alternate promoter use and alternate splicing. Several mRNA variants contain the IRES element. We found that IRES activity mapped to multiple regions within the eIF4GI RNA sequence, but not within the 5'-UTR per se. However, the 5'-UTR enhanced IRES activity in vivo and played a role in initiation codon selection. The eIF4GI IRES was active when transfected into cells in an RNA form, and thus, does not require nuclear processing events for its function. However, IRES activity was found to be dependent upon the presence, in cis, of a 5' m7guanosine-cap. Despite this requirement, the eIF4GI IRES was activated by 2A protease cleavage of eIF4GI, in vitro, and retained the ability to promote translation during poliovirus-mediated inhibition of cap-dependent translation. These data indicate that intact eIF4GI protein is not required for the de novo synthesis of eIF4GI, suggesting its expression can continue under stress or infection conditions where eIF4GI is cleaved.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号