首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a mathematical model specific to rat ventricular myocytes that includes electrophysiological representation, ionic homeostasis, force production, and sarcomere movement. We used this model to interpret, analyze, and compare two genetic manipulations that have been shown to increase myocyte relaxation rates, parvalbumin (Parv) de novo expression, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) overexpression. The model was used to seek mechanistic insights into 1) the relative contribution of two mechanisms by which SERCA2a overexpression modifies Ca2+ sequestration, i.e., more pumps and an increase in the SERCA2a-to-phospholamban ratio, 2) the mechanisms behind postrest potentiation and how Parv and SERCA2a influence this response, and 3) why Parv myocytes retain their fast kinetics when endogenous SERCA2a is partially impaired by thapsigargin (a condition used to mimic diastolic dysfunction). The model was also utilized to predict whether Parv metal-binding characteristics might be modified to improve diastolic and systolic functions and whether Parv or SERCA2a might affect diastolic Ca2+ levels and myocyte energetics. One outcome of the model was to demonstrate a higher peak and total ATP consumption in SERCA2a myocytes and more even distribution of ATP throughout the cardiac cycle in Parv myocytes. This may have implications for failing hearts that are energetically compromised.  相似文献   

2.
Gender-related differences in cardiac function have been described in the literature, but whether the presence of sex hormones is responsible for these differences remains unclear. This study was designed to determine whether testosterone regulates the gene expression of calcium regulatory proteins in rat heart, thus playing a role in gender-related differences in cardiac performance. Ventricular myocytes were isolated from two-day-old rats and treated with testosterone at varying duration; the levels of gene expression for the androgen receptor (AR) and major calcium regulatory proteins were determined by quantitative real-time PCR. Testosterone (1 microM) treatment induced a maximum increase in beta1-adrenergic receptor and L-type calcium channel mRNA levels following an eight hour exposure. Six hours testosterone treatment stimulated a 300-fold increase in androgen receptor message abundance, and Na/Ca exchanger mRNA levels reached a maximum level following twenty-four hour testosterone treatment. Taken together, these data provide the first evidence that testosterone regulates gene expression of the major calcium regulatory proteins in isolated ventricular myocytes, and may thus play a role in the gender-related differences observed in cardiac performance.  相似文献   

3.
4.
Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium-handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.  相似文献   

5.
G. Van Nigtevecht 《Genetica》1966,37(1):281-306
Sex-linked and sex-influenced inheritance are of interest because of their relation to the still intriguing problem of sex detrmination. Genes involved in the formation of the sex organs are regarded to be sex-determining genes. These genes may be present in all chromosomes including the sex-chromosomes. Other genes present in the sex-chromosomes, but not involved in sex determination, are the sex-linked genes. A mutation for narrow leaves we came across in ourM. ablum material is regarded as a case of sex linkage. Also the certation effect observed inM. album andM. dioicum must have been caused by genes on the sex-chromosomes. In both cases, however, it is not altogether unikekely, that the genes, regarded as sex-linked ones, actually take in the process of sex-determination.Sex-determining genes might influence the effect of other genes, that are therefore called sex-influenced genes. We observed a number of such sex-influenced characters inMelandrium.InM. album, female plants are, on the whole, larger than male plants, having larger stems and leaves. The petals, however, are larger in male plants, except in families with very broad petals. The leaves and petals are narrower in female plants than in male ones, except in families with very broad leaves and families with broad petals, where the difference in shape was no longer present. Usually, slightly more anthocyanin is formed in male plants than in females both in petals and the green parts. More glandular hairs were observed on male plants than on female ones.Insofar the observations were made inM. dioicum the same results were obtained.We regard these phenomena to be an expression of the different physiological conditions in female and in male plants, these conditions being provoked by the sex-determinging genes and more favourable for vegetative growth in female than in male plants.  相似文献   

6.
Cardiovascular pathology accounts for the greatest number of mortalities in the western world and thus the development of ex vivo cardiac tissue has vast potential in cardiac therapy. Bio-electrosprays (BES), a recently discovered direct cell engineering protocol, has demonstrated tremendous applicability for regenerative and therapeutic medicine. For bio-electrospraying to be carried forward as a novel method of cardiac tissue engineering, it is important that the process does not adversely affect cellular physiology. Our previous work has shown that bio-electrospraying does not induce cell death, activate intracellular stress pathways or induce DNA damage in primary cardiac myocytes. Here we show for the first time using genome-wide microarray analysis, that bio-electrospraying has no negative effects on global gene expression in cardiac myocytes. Moreover, we show that bio-electrospraying does not lead to endothelial cell activation. These data suggest that BES has minimal effect upon the physiology of cardiac myocytes and endothelial cells and thus paves the way for the development of BES in cardiac tissue engineering.  相似文献   

7.
Hormone-stimulated lipolysis in cardiac myocytes.   总被引:2,自引:2,他引:0       下载免费PDF全文
Type L hormone-sensitive lipase (HSL) activity was increased approx. 35% above control in cardiac myocytes incubated for 15 min with 5 nM-adrenaline. Concomitantly. adrenaline-stimulated myocytes had a lower triacylglycerol content, released more non-esterified fatty acid and had a higher intracellular concentration of cyclic AMP than did myocytes incubated without hormone. The lipase activity measured in adrenaline-stimulated and non-stimulated myocytes was stable in acetone/diethyl ether, stimulated by serum and inhibited by NaCl. These properties are consistent with the type L designation of this HSL. The finding that type L HSL is stimulated by adrenaline indicates that the enzyme that is being activated is found in the cell and not associated with an extracellular compartment of the myocardium.  相似文献   

8.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

9.
10.
11.
12.
During the 1980s, many kinetoplastid genes were cloned and their function inferred from homology with genes from other organisms, location of the corresponding proteins or expression in heterologous systems. Up until 1990, before the availability of DNA transfection methodology, we could not analyze the function of kinetoplastid genes within the organisms themselves. Since then, it has become possible to create and complement mutants, to overexpress foreign proteins in the parasites, to knock out genes and even to switch off essential functions. However, these methods are not equally applicable in all parasites. Here, Christine Clayton highlights the differences and similarities between the most commonly used model organisms, and assesses the relative advantages of different approaches and parasites for different types of investigation.  相似文献   

13.
The whole-cell voltage-clamp technique employing electrolyte-filled micro-pipette suction electrodes is widely used to investigate questions requiring an electrophysiological approach. With this technique, the ionic composition of the cytosol is assumed to be strongly influenced (as result of diffusion) by the ionic composition of the solution contained in the electrode. If this assumption is valid for isolated cardiac myocytes, the technique would be particularly powerful for studying the dependence of their Na,K-pump on the intracellular [Na+]. However, the relationship between the concentrations of ions in the solution filling the electrode and those in the cytosol has not been established. The relationship was investigated to determine in particular whether the [Na+] at the intracellular cation ligand binding sites for the Na-pump ([ Na+]ps) can be set and clamped by [Na+] in the pipette electrode ([ Na+]pip). If [Na+]pip can set and clamp [Na+]ps, this would provide a means for defining the dependence of the Na,K-pump on intracellular [Na+]. The relationship between [Na+]pip and [Na+]ps was analyzed using two approaches. First, a mathematical model of three-dimensional ionic diffusion within a whole-cell patch-clamped myocyte was developed and the effects of experimental parameters on mean [Na+]ps were investigated. When typical experimental values were simulated, the time course to achieve steady state mean [Na+]ps was found to be most sensitive to variations in electrode pore size, cell length and the Na+ pumping rate, but at steady state, mean [Na+]ps varies from [Na+]pip by 5% or less depending on pump rate. Second, to provide experimental support for the validity of the simulations, isolated ventricular myocytes were voltage-clamped and the reversal potential for the Na current was determined in order to estimate steady state intracellular [Na+]. The results of the mathematical and experimental analyses suggest that steady state [Na+]ps can be regulated by the [Na+] in suction pipette electrodes. These findings, while also having a broader significance, indicate for isolated cardiac myocytes that whole-cell suction micro-electrodes can provide a means to assess the dependence of the Na,K-pump on [Na+]ps.  相似文献   

14.
The cardiac sarcoplasmic reticulum calcium-ATPase (SERCA2a), Na+/Ca2+ exchanger (NCX1), and ryanodine receptor (RyR2) are proteins involved in the regulation of myocyte calcium. We tested whether exercise training (ET) alters those proteins during development of chronic heart failure (CHF). Ten dogs were chronically instrumented to permit hemodynamic measurements. Five dogs underwent 4 wk of cardiac pacing (210 beats/min for 3 wk and 240 beats/min for the 4th wk), whereas five dogs underwent the same pacing regimen plus daily ET (5.1 +/- 0.3 km/h, 2 h/day). Paced animals developed CHF characterized by hemodynamic abnormalities and reduced ejection fraction. ET preserved resting hemodynamics and ejection fraction. Left ventricular samples were obtained from all dogs and another five normal dogs for mRNA (Northern analysis, band intensities normalized to glyceraldehyde-3-phosphate dehydrogenase) and protein level (Western analysis, band intensities normalized to tubulin) measurements. In failing hearts, SERCA2a was decreased by 33% (P < 0.05) and 65% (P < 0.05) in mRNA and protein level, respectively, compared with normal hearts; there was only an 8.6% reduction in mRNA and a 32% reduction in protein in exercised animals (P < 0.05 from CHF). mRNA expression of NCX1 increased by 44% in paced-only dogs compared with normal (P < 0.05) but only by 22% in trained dogs (P < 0.05 vs. CHF); protein level of NCX1 was elevated in paced-only dogs (71%, P < 0.05) but partially normalized by ET (33%, P < 0.05 from CHF). RyR2 was not altered in any of the dogs. In conclusion, long-term ET may ameliorate cardiac deterioration during development of CHF, in part via normalization of myocardial calcium-handling proteins.  相似文献   

15.
When fluorescently labeled contractile proteins are injected into embryonic muscle cells, they become incorporated into the cells' myofibrils. In order to determine if this exchange of proteins is unique to the embryonic stage of development, we isolated adult cardiac myocytes and microinjected them with fluorescently labeled actin, myosin light chains, alpha-actinin, and vinculin. Each of these proteins was incorporated into the adult cardiomyocytes and was colocalized with the cells' native proteins, despite the fact that the labeled proteins were prepared from noncardiac tissues. Within 10 min of injection, alpha-actinin was incorporated into Z-bands surrounding the site of injection. Similarly, 30 sec after injection, actin was incorporated into the entire I-bands at the site of injection. Following a 3-h incubation, increased actin fluorescence was noted at the intercalated disc. Vinculin exchange was seen in the intercalated discs, as well as in the Z-bands throughout the cells. Myosin light chains required 4-6 h after injection to become incorporated into the A-bands of the adult muscle. Nonspecific proteins, such as fluorescent BSA, showed no association with the myofibrils or the former intercalated discs. When adult cells were maintained in culture for 10 days, they retain the ability to incorporate these contractile proteins into their myofibrils. T-tubules and the sarcoplasmic reticulum could be detected in periodic arrays in the freshly isolated cells using the membrane dye WW781 and DiOC6[3], respectively. In conclusion, the myofibrils in adult, as in embryonic, muscle cells are dynamic structures, permitting isoform transitions without dismantling of the myofibrils.  相似文献   

16.
Application of modern gene technology to strain improvement of the industrially important bacterium Bacillus amyloliquefaciens is reported. Several different plasmid constructions carrying the alpha-amylase gene (amyE) from B. amyloliquefaciens were amplified in this species either extrachromosomally or intrachromosomally. The amyE gene cloned on a pUB110-derived high copy plasmid pKTH10 directed the highest yields both in rich laboratory medium and in crude industrial medium. The alpha-amylase activity, when compared with the parental strain, was enhanced up to 20-fold in the pKTH 10 transformant. This strain showed decreased activities for other exoenzymes, such as proteases and beta-glucanase suggesting common limiting resources in the processing of these enzymes. Deletions were made in vitro in genes encoding neutral (nprE), alkaline (aprE) protease and beta-glucanase (bglA). The engineered genes were cloned into the thermosensitive plasmid pE194, and the resulting plasmids were used to replace the corresponding wild type chromosomal genes in B. amyloliquefaciens by integration-excision at non-permissive temperature. The double mutant deficient in the major proteases (delta nprE delta aprE) showed about a 2-fold further enhancement in alpha-amylase production in the industrial medium compared with the relevant wild type backgroud, both when plasmid-free and when transformed with pKTH10; this strain also produced elevated levels of the chromosomally-encoded beta-glucanase; pKTH10 was stably maintained both in the wild type strain and in the delta nprE delta aprE mutant. We suggest that the higher yields in alpha-amylase and beta-glucanase in the delta nprE delta aprE strain are primarily due to improved access to limiting resources, and that decreased proteolytic degradation may have had a secondary role in retaining the high activity obtained.  相似文献   

17.
Genetic manipulation of centromere function.   总被引:21,自引:10,他引:21       下载免费PDF全文
  相似文献   

18.
The aim was to establish whether increased cardiac fatty acid oxidation in hyperthyroidism is due to direct alterations in cardiac metabolism which favour fatty acid oxidation and/or whether normal regulatory links between changes in glucose supply and fatty acid oxidation are dysfunctional. Euthyroid rats were sampled in the absorptive state or after 48 h starvation. Rats were rendered hyperthyroid by injection of tri-iodothyronine (1000 microg/kg body wt. per day; 3 days). We evaluated the regulatory significance of direct effects of hyperthyroidism by measuring rates of palmitate oxidation in the absence or presence of glucose using cardiac myocytes. The results were examined in relation to the activity/regulatory characteristics of cardiac carnitine palmitoyltransferase (CPT) estimated by measuring rates of [3H]palmitoylcarnitine formation from [3H]carnitine and palmitoyl-CoA by isolated mitochondria. To define the involvement of other hormones, we examined whether hyperthyroidism altered basal or agonist-stimulated cardiac cAMP concentrations in cardiac myocytes and whether the effects of hyperthyroidism could be reversed by 24 h exposure to insulin infused subcutaneously (2 i. u. per day; Alzet osmotic pumps). Rates of 14C-palmitate oxidation (to 14CO2) by cardiac myocytes were significantly increased (1.6 fold; P< 0.05) by hyperthyroidism, whereas the percentage suppression of palmitate oxidation by glucose was greatly diminished. Cardiac CPT activities in mitochondria from hyperthyroid rats were 2-fold higher and the susceptibility of cardiac CPT activity to inhibition by malonyl-CoA was decreased. These effects were not mimicked by 48 h starvation. The decreased susceptibility of cardiac CPT activities to malonyl-CoA inhibition in hyperthyroid rats was normalised by 24 h exposure to elevated insulin concentration. Acute insulin addition did not influence the response to glucose in cardiac myocytes from euthyroid or hyperthyroid rats and basal and agonist-stimulated cAMP concentrations were unaffected by hyperthyroidism in vivo. The data provide insight into possible mechanisms by which hyperthyroidism facilitates fatty acid oxidation by the myocardium, identifying changes in cardiac CPT activity and malonyl-CoA sensitivity that would be predicted to render cardiac fatty acid oxidation less sensitive to external factors influencing malonyl-CoA content, and thereby to favour fatty acid oxidation. The increased CPT activity observed in response to hyperthyroidism may be a consequence of an impaired action of insulin but occurs through a cAMP-independent mechanism.  相似文献   

19.
Within a study of the genetics of Southeastern European populations seven serum protein polymorphisms (AMY2, BF, C3, CP, GC, HPA, TF) were examined in three samples of Aromuns (Albania: the village of Andon Poci, province Gjirocaster, Republic of Macedonia: Stip region, Romania: the village Kogalniceanu, province Dobruja) and four reference samples (Albanians: Tirana, Romanians: Constanta and Ploiesti as well as Greeks (Northeastern Greece)). The Aromun samples from Albania and Romania form one separate cluster and the reference samples together with the Aromuns from Macedonia (Stip region) form a second one.  相似文献   

20.
It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号