首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent   总被引:1,自引:0,他引:1  
It is now generally accepted that Pex5p, the receptor for most peroxisomal matrix proteins, cycles between the cytosol and the peroxisomal compartment. According to current models of peroxisomal biogenesis, this intracellular trafficking of Pex5p is coupled to the transport of newly synthesized peroxisomal proteins into the organelle matrix. However, direct evidence supporting this hypothesis was never provided. Here, using an in vitro peroxisomal import system, we show that insertion of Pex5p into the peroxisomal membrane requires the presence of cargo proteins. Strikingly the peroxisomal docking/translocation machinery is also able to catalyze the membrane insertion of a Pex5p truncated molecule lacking any known cargo-binding domain. These results suggest that the cytosol/peroxisomal cycle in which Pex5p is involved is directly or indirectly regulated by Pex5p itself and not by the peroxisomal docking/translocation machinery.  相似文献   

2.
Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.  相似文献   

3.
Peroxisomal biogenesis is a complex process requiring the action of numerous peroxins. One central component of this machinery is Pex14p, an intrinsic peroxisomal membrane protein probably involved in the docking of Pex5p, the receptor for PTS1-containing proteins (peroxisomal targeting signal 1-containing proteins). In this work the membrane topology of mammalian Pex14p was studied. Using a combination of protease protection assays and CNBr cleavage, we show that the first 130 amino acid residues of Pex14p are highly protected from exogenously added proteases by the peroxisomal membrane itself. Data indicating that this domain is responsible for the strong interaction of Pex14p with the organelle membrane are presented. All the other Pex14p amino acid residues are exposed to the cytosol. The properties of recombinant human Pex14p were also characterised. Heterologous expressed Pex14p was found to be a homopolymer of variable stoichiometry. Finally, in vitro binding assays indicate that homopolymerisation of Pex14p involves a domain comprising amino acid residues 147-278 of this peroxin.  相似文献   

4.
Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed.In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.  相似文献   

5.
Current evidence favors a cycling receptor model for the import of peroxisomal matrix proteins. The yeast Pex14 protein together with Pex13p and Pex17p form the docking subcomplex at the peroxisomal membrane and interact in this cycle with both soluble import receptors Pex5p and Pex7p. In a first step of a structure-function analysis of Saccharomyces cerevisiae Pex14p, we mapped its binding sites with both receptors. Using the yeast two-hybrid system and pull-down assays, we showed that Pex5p directly interacts with two separate regions of ScPex14p, amino acid residues 1-58 and 235-308. The latter binding site at the C terminus of ScPex14p overlaps with a binding site of Pex7p at amino acid residues 235-325. The functional assessment of these two binding sites of ScPex14p with the peroxisomal targeting signal receptors indicates that they have distinct roles. Deletion of the N-terminal 58 amino acids caused a partial defect of matrix protein import in pex14delta cells expressing the Pex14-(59-341)-p fragment; however, it did not lead to a pex phenotype. In contrast, truncation of the C-terminal 106 amino acids of ScPex14p completely blocked this process. On the basis of these and other published data, we propose that the C terminus of Pex14p contains the actual docking site and discuss the possibility that the N terminus could be involved in a Pex5p-Pex14p association inside the peroxisomal membrane.  相似文献   

6.
Most newly synthesized peroxisomal proteins are targeted to the organelle by Pex5p, the peroxisomal cycling receptor. Pex5p interacts with these proteins in the cytosol, transports them to the peroxisomal docking/translocation machinery and promotes their translocation across the organelle membrane. Finally, Pex5p is recycled back to the cytosol in order to catalyse additional rounds of transportation. Although several properties of this protein sorting pathway have been recently uncovered, we are still far from comprehending many of its basic principles. Here, we describe the mechanistic implications of two single-amino acid substitutions in Pex5p. The first mutation characterized, Cys11Ser, blocks the recycling of Pex5p back into the cytosol at the step in which stage 2 Pex5p is converted into stage 3 Pex5p. The mutation Asn526Lys, previously described in a child with neonatal adrenoleukodystrophy and shown to abolish the PTS1-binding capacity of Pex5p, results in a Pex5p protein exhibiting import capacity. Protease assays suggest that the Asn526Lys mutation causes conformational alterations at the N-terminal half of Pex5p mimicking the ones induced by binding of a PTS1-containing peptide to the normal peroxin. The implications of these findings on the mechanism of protein translocation across the peroxisomal membrane are discussed.  相似文献   

7.
Peroxisomal matrix protein import is facilitated by cycling receptors shuttling between the cytosol and the peroxisomal membrane. One crucial step in this cycle is the ATP-dependent release of the receptors from the peroxisomal membrane. This step is facilitated by the peroxisomal AAA (ATPases associated with various cellular activities) proteins Pex1p and Pex6p with ubiquitination of the receptor being the main signal for its export. Here we report that the AAA complex contains dislocase as well as deubiquitinating activity. Ubp15p, a ubiquitin hydrolase, was identified as a novel constituent of the complex. Ubp15p partially localizes to peroxisomes and is capable of cleaving off ubiquitin moieties from the type I peroxisomal targeting sequence (PTS1) receptor Pex5p. Furthermore, Ubp15p-deficient cells are characterized by a stress-related PTS1 import defect. The results merge into a picture in which removal of ubiquitin from the PTS1 receptor Pex5p is a specific event and might represent a vital step in receptor recycling.  相似文献   

8.
We report the characterization of ScPex8p, which is essential for peroxisomal biogenesis in Saccharomyces cerevisiae. Cells lacking Pex8p are characterized by the presence of peroxisomal membrane ghosts and mislocalization of peroxisomal matrix proteins of the PTS1 and PTS2 variety to the cytosol. Pex8p is tightly associated with the lumenal face of the peroxisomal membrane. Consistent with its intraperoxisomal localization, Pex8p contains a peroxisomal targeting signal 1, and it interacts with the PTS1 receptor Pex5p. However, the Pex5p/Pex8p association is also observed upon deletion of the PTS1 of Pex8p, suggesting that Pex8p contains a second binding site for Pex5p. The pex8Delta mutant phenotype and the observed PTS1-independent interaction with the PTS1 receptor suggest that Pex8p is involved in protein import into the peroxisomal matrix. In pex8Delta cells, the PTS1 and PTS2 receptor still associate with membrane bound components of the protein import machinery, supporting the assumption that the Pex8p function in protein translocation follows the docking event.  相似文献   

9.
Biogenesis of the mammalian peroxisomal membrane requires the action of Pex3p and Pex16p, two proteins present in the organelle membrane, and Pex19p, a protein that displays a dual subcellular distribution (peroxisomal and cytosolic). Pex19p interacts with most peroxisomal intrinsic membrane proteins, but whether this property reflects its role as an import receptor for this class of proteins or a chaperone-like function in the assembly/disassembly of peroxisomal membrane proteins has been the subject of much controversy. Here, we describe an in vitro system particularly suited to address this issue. It is shown that insertion of a reporter protein into the peroxisomal membrane is a Pex3p-dependent process that does not require ATP/GTP hydrolysis. The system can be programmed with recombinant versions of Pex19p, allowing us to demonstrate that Pex19p-cargo protein complexes formed in the absence of peroxisomes are the substrates for the peroxisomal docking/insertion machinery. Data suggesting that cargo-loaded Pex19p displays a much higher affinity for Pex3p than Pex19p alone are also provided. These results suggest that soluble Pex19p participates in the targeting of newly synthesized peroxisomal membrane proteins to the organelle membrane and support the existence of a cargo-induced peroxisomal targeting mechanism for Pex19p.  相似文献   

10.
The 41-kDa membrane-anchored peroxin Pex14p functions as the peroxisome targeting signal (PTS) receptor-mediated, initial import site for matrix proteins. We here identify the functional domains of Pex14p involved in the assembly of import site subcomplexes. The minimal region of Pex14p required for restoring impaired protein import in pex14 Chinese hamster ovary cell mutant lies at residues 21-260 in the primary sequence. A highly conserved N-terminal region, encompassing residues 21-70, interacts with the PTS1 receptor Pex5p, Pex13p, and Pex19p that is essential for membrane biogenesis. N-terminal residues 21-140, including a hydrophobic segment at 110-138, function as a topogenic sequence. Site-directed mutagenesis, size fractionation, and chemical cross-linking analyses demonstrate that the coiled-coil domain at residues 156-197 regulates homodimerization of Pex14p. Moreover, AXXXA and GXXXG motifs in the transmembrane segment mediate homomeric oligomerization of Pex14p, giving rise to assembly of high molecular mass complexes and thereby assuring Pex13p-dependent localization of Pex14p to peroxisomes. Pex5p, Pex13p, and Pex19p bind to Pex14p homo-oligomers with different molecular masses, whereas cargo-unloaded Pex5p apparently disassembles Pex14p homo-oligomers. Thus, Pex14p most likely forms several distinct peroxin complexes involved in peroxisomal matrix protein import.  相似文献   

11.
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57–71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.  相似文献   

12.
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.  相似文献   

13.
During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.  相似文献   

14.
Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.  相似文献   

15.
The energetics of Pex5p-mediated peroxisomal protein import   总被引:1,自引:0,他引:1  
Most newly synthesized peroxisomal matrix proteins are targeted to the organelle by Pex5p, the peroxisomal cycling receptor. According to current models of peroxisomal biogenesis, Pex5p interacts with cargo proteins in the cytosol and transports them to the peroxisomal membrane. After delivering the passenger protein into the peroxisomal matrix, Pex5p returns to the cytosol to catalyze additional rounds of transportation. Obviously, such cyclic pathway must require energy, and indeed, data confirming this need are already available. However, the exact step(s) of this cycle where energy input is necessary remains unclear. Here, we present data suggesting that insertion of Pex5p into the peroxisomal membrane does not require ATP hydrolysis. This observation raises the possibility that at the peroxisomal membrane ATP is needed predominantly (if not exclusively) downstream of the protein translocation step to reset the Pex5p-mediated transport system.  相似文献   

16.
In mammals, targeting of newly synthesized peroxisomal matrix proteins to the organelle requires Pex5p, the peroxisomal cycling receptor. Pex5p is a multidomain protein involved in a complex network of transient protein-protein interactions. Besides interacting directly with most peroxisomal proteins en route to the organelle, Pex5p has also binding domains for several components of the peroxisomal docking/translocation machinery. However, our knowledge of how binding of a cargo protein to Pex5p influences its properties is still rather limited. Here, we describe a protease assay particularly useful for identifying and characterizing protein-protein interactions involving human Pex5p. Binding of a PTS1-containing peptide/protein to Pex5p as well as the interaction of this peroxin with the Src homology domain 3 of Pex13p could be easily demonstrated using this assay. To address the possible effects of these Pex5p-interacting peptides/proteins on the assumed quaternary structure of Pex5p, we have analyzed the hydrodynamic properties of human Pex5p using size exclusion chromatography, sucrose gradient centrifugation, and sedimentation equilibrium centrifugation. Our results show that Pex5p is a monomeric protein with an abnormal shape. The implications of these findings on current models of protein translocation across the peroxisomal membrane are discussed.  相似文献   

17.
18.
Ubiquitination of mammalian Pex5p, the peroxisomal import receptor   总被引:2,自引:0,他引:2  
Protein translocation across the peroxisomal membrane requires the concerted action of numerous peroxins. One central component of this machinery is Pex5p, the cycling receptor for matrix proteins. Pex5p recognizes newly synthesized proteins in the cytosol and promotes their translocation across the peroxisomal membrane. After this translocation step, Pex5p is recycled back into the cytosol to start a new protein transport cycle. Here, we show that mammalian Pex5p is ubiquitinated at the peroxisomal membrane. Two different types of ubiquitination were detected, one of which is thiol-sensitive, involves Cys(11) of Pex5p, and is necessary for the export of the receptor back into the cytosol. Together with mechanistic data recently described for yeast Pex5p, these findings provide strong evidence for the existence of Pex4p- and Pex22p-like proteins in mammals.  相似文献   

19.
The peroxisomal matrix protein import is facilitated by cycling receptor molecules that shuttle between the cytosol and the peroxisomal membrane. In the yeast Saccharomyces cerevisiae, the import of proteins harboring a peroxisomal targeting signal of type II (PTS2) is mediated by the receptor Pex7p and its co-receptor Pex18p. Here we demonstrate that Pex18p undergoes two kinds of ubiquitin modifications. One of these ubiquitination events depends on lysines 13 and 20 and forces rapid Pex18p turnover by proteasomal degradation. A cysteine residue near the extreme Pex18p amino-terminus is required for the second type of ubiquitination. It turned out that this cysteine residue at position 6 is essential for the function of Pex18p in peroxisomal protein import but does not contribute to receptor-cargo association and binding to the peroxisomal import apparatus. However, in contrast to the wild-type protein, cysteine 6-mutated Pex18p is arrested in a membrane-protected state, whereas Pex7p is accessible in a protease protection assay. This finding indicates that Pex18p export is linked to cargo translocation, which supports the idea of an export-driven import of proteins into peroxisomes.  相似文献   

20.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号