首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the human transmembrane protein CRB1 are associated with severe forms of retinal dystrophy, retinitis pigmentosa 12 (RP12), and Leber's congenital amaurosis (LCA). The Drosophila homolog, crumbs, is required for polarity and adhesion in embryonic epithelia and for correct formation of adherens junctions and proper morphogenesis of photoreceptor cells. Here, we show that mutations in Drosophila crumbs result in progressive, light-induced retinal degeneration. Degeneration is prevented by expression of p35, an inhibitor of apoptosis, or by reduction of rhodopsin levels through a vitamin A-deficient diet. In the dark, rhabdomeres survive but exhibit morphogenetic defects. We demonstrate that it is the extracellular portion of the Crumbs protein that is essential to suppress light-induced programmed cell death, while proper morphogenesis depends on the intracellular part. We conclude that human and Drosophila Crumbs proteins are functionally conserved to prevent light-dependent photoreceptor degeneration. This experimental system is now ideally suited to study the genetic and molecular basis of RP12- and LCA-related retinal degeneration.  相似文献   

2.
Makarova O  Roh MH  Liu CJ  Laurinec S  Margolis B 《Gene》2003,302(1-2):21-29
Drosophila Crumbs is a transmembrane protein that plays an important role in epithelial cell polarity and photoreceptor development. Overexpression of Crumbs in Drosophila epithelia expands the apical surface and leads to disruption of cell polarity. Drosophila Crumbs also interacts with two other polarity genes, Stardust and Discs Lost. Recent work has identified a human orthologue of Drosophila Crumbs, known as CRB1, that is mutated in the eye disorders, retinitis pigmentosa and Leber congenital amaurosis. Our work has demonstrated that human CRB1 can form a complex with mammalian orthologues of Stardust and Discs Lost, known as protein associated with Lin-7 (Pals1) and Pals1 associated tight junction (PATJ), respectively. In the current report we have cloned a full length cDNA for a human paralogue of CRB1 called Crumbs3 (CRB3). In contrast to Drosophila Crumbs and CRB1, CRB3 has a very short extracellular domain but like these proteins it has a conserved intracellular domain that allows it to complex with Pals1 and PATJ. Mouse and human CRB3 have identical intracellular domains but divergent extracellular domains except for a conserved N-glycosylation site. CRB3 is localized to the apical surface and tight junctions but the conserved N linked glycosylation site does not appear to be necessary for CRB3 apical targeting. CRB3 is a specialized isoform of the Crumbs protein family that is expressed in epithelia and can tie the apical membrane to the tight junction.  相似文献   

3.
The formation of a belt-like junctional complex separating the apical from the lateral domain is an essential step in the differentiation of epithelial cells. Thus protein complexes regulating this event are of first importance for the development of cell polarity and physiological functions of epithelial tissues. In Drosophila, the discovery of a gene, crb, controlling the coalescence of the spots of zonula adherens (ZA) into a adhesive ring around the cells was a major step. We know now that Crumbs, the product of crb is an apical transmembrane protein conserved in mammals and that it interacts by its cytoplasmic domain with two cortical modular proteins, Stardust (Sdt) and Discs lost (Dlt) that are also essential for the correct assembly of the ZA. These two proteins are also conserved in mammals and it is most likely that the Crumbs complex plays a similar role in very different species. Recently, we have shown that Crumbs interacts with the cortical cytoskeleton made of DMoesin and beta heavy-Spectrin and this connection could explain in part the role of Crumbs in building the ZA. Future work will help to understand several aspects of the Crumbs complex that are still unknown, like the role of the large extracellular domain or the precise function of Sdt and Dlt in the building of the ZA. Finding an answer to these questions will help to find new therapies for Retinitis pigmentosa and other retina degeneration in which CRB1, the human homologue of crb, has been involved.  相似文献   

4.
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.  相似文献   

5.
Crumbs is an apical transmembrane protein crucial for epithelial morphogenesis in Drosophila melanogaster embryos. A protein with all the characteristics for a Crumbs homologue has been identified from patients suffering from retinitis pigmentosa group 12, but this protein (CRB1) is only expressed in retina and some parts of the brain, both in human and mouse. Here, we describe CRB3, another Crumbs homologue that is preferentially expressed in epithelial tissues and skeletal muscles in human. CRB3 shares the conserved cytoplasmic domain with other Crumbs but exhibits a very short extracellular domain without the EGF- and laminin A-like G repeats present in the other Crumbs. CRB3 is localized to the apical and subapical area of epithelial cells from the mouse and human intestine, suggesting that it could play a role in epithelial morphogenesis. Indeed, expression of CRB3 or of a chimera containing the extracellular domain of the neurotrophin receptor p75NTR and the transmembrane and cytoplasmic domains of CRB3 led to a slower development of functional tight junctions in Madin-Darby canine kidney cells. This phenotype relied on the presence of CRB3 four last amino acids (ERLI) that are involved in a direct interaction with Par6, a regulator of epithelial polarity and tight junction formation. Thus, CRB3, through its cytoplasmic domain and its interactors, plays a role in apical membrane morphogenesis and tight junction regulation.  相似文献   

6.
Mammalian homologues of the Drosophila polarity proteins Stardust, Discs Lost, and Crumbs have been identified as Pals1, Pals1-associated tight junction protein (PATJ), and human Crumbs homologue 1 (CRB1), respectively. We have previously demonstrated that PATJ, Pals1, and CRB1 can form a tripartite tight junction complex in epithelial cells and that PATJ recruits Pals1 to tight junctions. Here, we observed that the Pals1/PATJ interaction was not crucial for the ultimate targeting of PATJ itself to tight junctions. This prompted us to examine if any of the 10 post-synaptic density-95/Discs Large/zona occludens-1 (PDZ) domains of PATJ could bind to the carboxyl termini of known tight junction constituents. We found that the 6th and 8th PDZ domains of PATJ can interact with the carboxyl termini of zona occludens-3 (ZO-3) and claudin 1, respectively. PATJ missing the 6th PDZ domain was found to mislocalize away from cell contacts. Surprisingly, deleting the 8th PDZ domain had little effect on PATJ localization. Finally, reciprocal co-immunoprecipitation experiments revealed that full-length ZO-3 can associate with PATJ. Hence, the PATJ/ZO-3 interaction is likely important for recruiting PATJ and its associated proteins to tight junctions.  相似文献   

7.
The cell polarity gene,crumbs (crb), has been shown to participate in the development and degeneration of theDrosophila retina. Mutations inCRB1, the human homologue ofDrosophila crb, also result in retinitis pigmentosa and Leber congential amaurosis. In this study, we used the gain-of-function approach to delineate the roles ofcrb in developingDrosophila eye. In the third-instar larval stage, eye development is initiated with photoreceptor differentiation and positioning of photoreceptor nuclei in the apical cellular compartment of retinal epithelium. In the pupal stage, differentiated photoreceptors begin to form the photosensitive structures, the rhabdomeres, at their apical surface. UsingGMR-Gal4 to drive overexpression of the Crb protein at the third-instar eye disc, we found that differentiation of photoreceptors was disrupted and the nuclei of differentiated photoreceptors failed to occupy the apical compartment. Usinghs-Gal4 to drive Crb overexpression in pupal eyes resulted in interference with extension of the adherens junctions and construction of the rhabdomeres, and these defects were stage-dependent. This gain-of-function study has enabled us to delineate the roles of Crb at selective stages of eye development inDrosophila.  相似文献   

8.
9.
Establishment of apical-basal cell polarity has emerged as an important process during development, and the Crumbs complex is a major component of this process in Drosophila. By comparison, little is known about the role of Crumbs (Crb) proteins in vertebrate development. We show that the FERM protein Mosaic Eyes (Moe) is a novel regulatory component of the Crumbs complex. Moe coimmunoprecipitates with Ome/Crb2a and Nok (Pals1) from adult eye and in vitro interaction experiments suggest these interactions are direct. Morpholino knockdown of ome/crb2a phenocopies the moe mutations. Moe and Crumbs proteins colocalize apically and this apical localization requires reciprocal protein function. By performing genetic mosaic analyses, we show that moe- rod photoreceptors have greatly expanded apical structures, suggesting that Moe is a negative regulator of Crumbs protein function in photoreceptors. We propose that Moe is a crucial regulator of Crumbs protein cell-surface abundance and localization in embryos.  相似文献   

10.
BACKGROUND: Specialised cell junctions in epithelia serve as cell-cell adhesion sites and thus contribute to the maintenance of tissue integrity. The Drosophila gene crumbs encodes a transmembrane protein that is required for the biogenesis of the zonula adherens, a belt-like structure encircling the apex of epithelial cells. As previously shown, expression of just the short membrane-bound cytoplasmic domain is sufficient to rescue major defects associated with the loss of crumbs function. RESULTS: The cytoplasmic domain of Crumbs is highly conserved in two putative crumbs homologues in Caenorhabditis elegans. To assess the significance of conserved residues, various point mutations and deletions were introduced into this region. Two functional domains were revealed, an amino-terminal region and the carboxy-terminal amino acids EERLI. Both are necessary for rescue of the crumbs phenotype. The EERLI motif interacts with Discs Lost, a cytoplasmic protein containing PDZ domains. Overexpression of the Crumbs cytoplasmic domain induces a transition from the single-layered epithelium to a multilayered tissue. This transition is associated with redistribution of the Drosophila homologue of the cell adhesion molecule E-cadherin, and depends on the presence of the EERLI motif. CONCLUSIONS: We propose a model in which the interaction of the Crumbs carboxyl terminus with Discs Lost organises a membrane-associated protein complex in the apical cytocortex of epithelial cells. This scaffold mediates the localisation and stabilisation of the zonula adherens component DE-cadherin, a crucial component for the maintenance of epithelial cell polarity and tissue integrity.  相似文献   

11.
Mutations in the human Crumbs homologue 1 (CRB1) gene are a frequent cause of various forms of retinitis pigmentosa. The CRB1-membrane-associated palmitoylated protein (MPP)5 protein complex is thought to organize an intracellular protein scaffold in the retina that is involved in maintenance of photoreceptor-Müller glia cell adhesion. This study focused on the binding characteristics and subcellular localization of MPP3, a novel member of the MPP5 protein scaffold at the outer limiting membrane (OLM), and of the DLG1 protein scaffold at the outer plexiform layer of the retina. MPP3 localized at the photoreceptor synapse and at the subapical region adjacent to adherens junctions at the OLM. Localization studies in human retinae revealed that MPP3 colocalized with MPP5 and CRB1 at the subapical region. MPP3 and MPP4 colocalized with DLG1 at the outer plexiform layer. Mouse Dlg1 formed separate complexes with Mpp3 and Mpp4 in vivo. These data implicate a role for MPP3 in photoreceptor polarity and, by association with MPP5, pinpoint MPP3 as a functional candidate gene for inherited retinopathies. The separate Mpp3/Dlg1 and Mpp4/Dlg1 complexes at the outer plexiform layer point towards additional yet unrecognized functions of these membrane associated guanylate kinase proteins.  相似文献   

12.
The presenilin proteins (PS1 and PS2) with their partners (NCT, Aph1, and Pen2) are the major components of the high molecular weight gamma-secretase complex which facilitates the intramembraneous cleavage of various type 1 transmembrane proteins, including the amyloid-beta precursor protein (APP) and the Notch receptor. Additional gamma-secretase complex components may be involved in regulation of its activity and specificity. A recent investigation indicated that the Crumbs protein is a negative regulator of Notch signaling and may act by repressing gamma/epsilon-secretase activity in Drosophila [Herranz, H., Stamataki, E., Feiguin, F., and Milan, M. (2006) EMBO Rep. 7, 297-302]. To address this question, we investigated potential functional interactions between the human Crumbs homologues (CRB1, CRB2, and CRB3) and presenilin complexes which mediate gamma/epsilon-secretase cleavage of APP and Notch. We found no evidence for direct interaction between CRB1, CRB2, or CRB3 and presenilin complex components. Furthermore, overexpression of human CRB1 and related isoforms, CRB2 and CRB3, had no effect on the levels of presenilin complex components, on NCT maturation or on PS endoproteolysis, and did not alter Abeta AICD or NICD production. These results suggest that, in mammalian cells at least, Crumbs is unlikely to be a significant direct modulator of presenilin-dependent gamma/epsilon-secretase activity.  相似文献   

13.

Background  

Vertebrate retinal photoreceptors are morphologically complex cells that have two apical regions, the inner segment and the outer segment. The outer segment is a modified cilium and is continuously regenerated throughout life. The molecular and cellular mechanisms that underlie vertebrate photoreceptor morphogenesis and the maintenance of the outer segment are largely unknown. The Crumbs (Crb) complex is a key regulator of apical membrane identity and size in epithelia and in Drosophila photoreceptors. Mutations in the human gene CRUMBS HOMOLOG 1 (CRB1) are associated with early and severe vision loss. Drosophila Crumbs and vertebrate Crb1 and Crumbs homolog 2 (Crb2) proteins are structurally similar, all are single pass transmembrane proteins with a large extracellular domain containing multiple laminin- and EGF-like repeats and a small intracellular domain containing a FERM-binding domain and a PDZ-binding domain. In order to begin to understand the role of the Crb family of proteins in vertebrate photoreceptors we generated stable transgenic zebrafish in which rod photoreceptors overexpress full-length Crb2a protein and several other Crb2a constructs engineered to lack specific domains.  相似文献   

14.
Cell polarity is induced and maintained by separation of the apical and basolateral domains through specialized cell-cell junctions. The Crumbs protein and its binding partners are involved in formation and stabilization of adherens junctions. In this study, we describe a novel component of the mammalian Crumbs complex, the FERM domain protein EPB41L5, which associates with the intracellular domains of all three Crumbs homologs through its FERM domain. Surprisingly, the same FERM domain is involved in binding to the HOOK domain of MPP5/PALS1, a previously identified interactor of Crumbs. Co-expression and co-localization studies suggested that in several epithelial derived tissues Epb4.1l5 interacts with at least one Crumbs homolog, and with Mpp5. Although at early embryonic stages Epb4.1l5 is found at the basolateral membrane compartment, in adult tissues it co-localizes at the apical domain with Crumbs proteins and Mpp5. Overexpression of Epb4.1l5 in polarized MDCK cells affects tightness of cell junctions and results in disorganization of the tight junction markers ZO-1 and PATJ. Our results emphasize the importance of a conserved Crumbs-MPP5-EPB41L5 polarity complex in mammals.  相似文献   

15.
Mui UN  Lubczyk CM  Nam SC 《PloS one》2011,6(10):e25965

Background

Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes. Since Spectraplakin is able to bind both microtubule and actin cytoskeletons, the role of Spectraplakin was analyzed in the regulations of apical Crb domain in developing Drosophila photoreceptors.

Methodology/Principal Findings

The localization pattern of Spectraplakin in developing pupal photoreceptors showed a unique intracellular distribution. Spectraplakin localized at rhabdomere terminal web which is at the basal side of the apical Crb or rhabdomere, and in between the adherens junctions. The spectraplakin mutant photoreceptors showed dramatic mislocalizations of Crb, adherens junctions, and the stable microtubules. This role of Spectraplakin in Crb and adherens junction regulation was further supported by spectraplakin''s gain-of-function phenotype. Spectraplakin overexpression in photoreceptors caused a cell polarity defect including dramatic mislocalization of Crb, adherens junctions and the stable microtubules in the developing photoreceptors. Furthermore, a strong genetic interaction between spectraplakin and crb was found using a genetic modifier test.

Conclusions/Significance

In summary, we found a unique localization of Spectraplakin in photoreceptors, and identified the role of spectraplakin in the regulation of the apical Crb domain and adherens junctions through genetic mutational analysis. Our data suggest that Spectraplakin, an actin-microtubule cross-linker, is essential in the apical and adherens junction controls during the photoreceptors morphogenesis.  相似文献   

16.
CRB3 (Crumbs homologue 3), a member of the CRB protein family (homologous to the Drosophila Crumbs), is expressed in different epithelium-derived cell types in mammals, where it seems to be involved in regulating the establishment and stability of tight junctions and in ciliogenesis. This protein has been also detected in the retina, but little is known about its localization and function in this tissue. Our goal here was to perform an in-depth study of the presence of CRB3 protein in the mouse retina and to analyze its expression during photoreceptor ciliogenesis and the establishment of the plexiform retinal layers. Double immunofluorescence experiments for CRB3 and well-known markers for the different retinal cell types were performed to study the localization of the CRB3 protein. According to our results, CRB3 is present from postnatal day 0 (P0) until adulthood in the mouse retina. It is localized in the inner segments (IS) of photoreceptor cells, especially concentrated in the area where the connecting cilium is located, in their synaptic terminals in the outer plexiform layer (OPL), and in sub-populations of amacrine and bipolar cells in the inner plexiform layer (IPL).  相似文献   

17.
Apicobasal cell polarity is crucial for morphogenesis of photoreceptor rhabdomeres and adherens junctions (AJs) in the Drosophila eye. Crumbs (Crb) is specifically localized to the apical membrane of photoreceptors, providing a positional cue for the organization of rhabdomeres and AJs. We show that the Crb complex consisting of Crb, Stardust (Sdt) and Discs-lost (Dlt) colocalizes with another protein complex containing Par-6 and atypical protein kinase C (aPKC) in the rhabdomere stalk of photoreceptors. Loss of each component of the Crb complex causes age-dependent mislocalization of Par-6 complex proteins, and ectopic expression of Crb intracellular domain is sufficient to recruit the Par-6 complex. We also show that the absence of Par-6 complex proteins results in severe mislocalization and loss of Crb complex. We further demonstrate that Dlt directly binds to Par-6, providing a molecular basis for the mutual dependence of the two complexes. These results suggest that the interaction of Crb and Par-6 complexes is required for the organization and maintenance of apical membranes and AJs of photoreceptors.  相似文献   

18.
Stuck MW  Conley SM  Naash MI 《PloS one》2012,7(3):e32484
The neural retinal leucine zipper (Nrl) knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl(-/-) retina, rods are converted into functional cone-like cells. The Nrl(-/-) retina is characterized by large undulations of the outer nuclear layer (ONL) commonly known as rosettes. Here we explore the mechanism of rosette development in the Nrl(-/-) retina. We report that rosettes first appear at postnatal day (P)8, and that the structure of nascent rosettes is morphologically distinct from what is seen in the adult retina. The lumen of these nascent rosettes contains a population of aberrant cells protruding into the subretinal space that induce infolding of the ONL. Morphologically adult rosettes do not contain any cell bodies and are first detected at P15. The cells found in nascent rosettes are photoreceptors in origin but lack inner and outer segments. We show that the adherens junctions between photoreceptors and Müller glia which comprise the retinal outer limiting membrane (OLM) are not uniformly formed in the Nrl(-/-) retina and thus allow protrusion of a population of developing photoreceptors into the subretinal space where their maturation becomes delayed. These data suggest that the rosettes of the Nrl(-/-) retina arise due to defects in the OLM and delayed maturation of a subset of photoreceptors, and that rods may play an important role in the proper formation of the OLM.  相似文献   

19.
Crumbs proteins are transmembrane proteins that regulate cellular apico-basal polarity. Animals carrying mutated crb1 present retinal vascular abnormalities; this mutation is associated with progressive retinal degeneration with intraretinal cystoid fluid collection in humans. This study aimed to evaluate a potential role of crumbs proteins in retinal vascular development and maintenance. We demonstrated that crumbs homologues (CRBs) were differentially expressed and changed dramatically during mouse retinal vascular development. Intravitreal injection of CRB1 and CRB2 siRNA induced delayed development of the deep capillary plexus and premature development of the intermediate capillary plexus, resulting in disrupted vascular integrity. However, microfluidic chip assay using human retinal endothelial cells revealed that CRBs do not directly affect in vitro retinal angiogenesis. CRBs control retinal angiogenesis by regulating neuroglial vascular endothelial growth factor-A (VEGFA) and matrix metalloproteinase-3 expression. These findings demonstrate a pivotal role of CRBs in providing critical neurotrophic support through normal layered vascular network development and maintenance. This implies that preserving CRBs and restoring layered retinal vascular networks could be novel targets for preventing vision-threatening retinal diseases.  相似文献   

20.
Adherens junctions play pivotal roles in cell and tissue organization and patterning by mediating cell adhesion and cell signaling. These junctions consist of large multiprotein complexes that join the actin cytoskeleton to the plasma membrane to form adhesive contacts between cells or between cells and extracellular matrix. The best-known adherens junction is the zonula adherens (ZA) that forms a belt surrounding the apical pole of epithelial cells. Recent studies in Drosophila have further illuminated the structure of adherens junctions. Scaffolding proteins encoded by the stardust gene are novel components of the Crumbs complex, which plays a critical role in ZA assembly.1-3 The small GTPase Rap1 controls the symmetric re-assembly of the ZA after cell division.4 Finally, the asymmetric distribution of adherens junction material regulates spindle orientation during asymmetric cell division in the sensory organ lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号