首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rodent leptin is secreted by adipocytes and acutely regulates appetite and chronically regulates body weight. Mechanisms for leptin secretion in cultured adipocytes were investigated. Acutely, energy-producing substrates stimulated leptin secretion about twofold. Biologically inert carbohydrates failed to stimulate leptin secretion, and depletion of intracellular energy inhibited leptin release. There appears to be a correlation between intracellular ATP concentration and the rate of leptin secretion. Insulin increased leptin secretion by an additional 25%. Acute leptin secretion is calcium dependent. When incubated in the absence of calcium or in the presence of intracellular calcium chelators, glucose plus insulin failed to stimulate leptin secretion. In contrast, basal leptin secretion is secreted spontaneously and is calcium independent. Adipocytes from fatter animals secrete more leptin, even in the absence of calcium, compared with cells from thinner animals. Acute stimulus-secretion coupling mechanisms were then investigated. The potassium channel activator diazoxide and the nonspecific calcium channel blockers nickel and cadmium inhibited acute leptin secretion. These studies demonstrate that intracellular energy production is important for acute leptin secretion and that potassium and calcium flux may play roles in coupling intracellular energy production to leptin secretion.  相似文献   

2.
The effects of the ionophores A-23187 and X-537 A on glucose metabolism, ATP content and sucrose permeability in pancreatic islets microdissected from obese-hyperglycemic mice were studied. The formation of 14CO2 from 10 mM D-[U-14C] GLUCOSE WAS INHIBITED BY OMISSION OF Ca2+ from the medium. A-23187 (10 muM) induced a further decrease of 14CO2 formation whereas X-537 A (10 muM) had no effect. At 20 mM glucose both A-23187 (48 muM) and X-537 A (43 muM) decreased the 14CO2 formation in the absence of Ca2+ whereas only X-537 A inhibited in the presence of Ca2+. X-537 A (43 muM) also decreased the formation of 3H2O from 20 mM D-[5-3H] glucose. The islet content of ATP was not changed after incubation in media deficient in either Mg2+ or Ca2+. However, omission of both Mg2+ and Ca2+ resulted in about 50% decrease of the ATP content. A-23187 and X-537 A induced dose-dependent decreases of the islet ATP content. X-537 A was much more potent than A-23187. Both ionophores induced stronger depression of the ATP content when Ca2+ was omitted. X-537 A (43 muM) but not A-23187 (48 muM) increased the beta-cell membrane permeability as indicated by an increased sucrose space in relation to the urea space of islets. Such an effect was not obtained with X-537 A at 1 muM or by omission of Ca2+. It is suggested that the marked metabolic effects of the ionophores reflect an impaired mitochondrial metabolism. These metabolic changes should be considered in interpretations of ionophore action on insulin secretion.  相似文献   

3.
Uncoupling protein 2 (UCP2) was reported to be involved in insulin-glucose homeostasis, based on well established event that inhibition of UCP2 stimulates insulin secretion in pancreatic β-cells. However, the role of UCP2 on insulin-stimulated glucose uptake in adipose tissue, which is an indispensable process in insulin-glucose homeostasis, remains unknown. In this study, UCP2 was inhibited by genipin in 3T3-L1 adipocytes, which increased mitochondrial membrane potential, intracellular ATP level and production of reactive oxygen species (ROS). Importantly, insulin-stimulated glucose uptake in 3T3-L1 adipocytes was largely impaired in the presence of genipin, and recovered by CCCP, a mitochondrial uncoupler. Furthermore, genipin leaded to suppression of insulin signal transduction through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). These results suggest that mitochondrial uncoupling in adipocytes positively regulates insulin-stimulated glucose uptake in adipocytes, and UCP2 may play an important role in insulin resistance.  相似文献   

4.
The aim of the present study was to determine the respective roles of energy substrates and insulin on leptin secretion from white adipocytes. Cells secreted leptin in the absence of glucose or other substrates, and addition of glucose (5 mM) increased this secretion. Insulin doubled leptin secretion in the presence of glucose (5 mM), but not in its absence. High concentrations of glucose (up to 25 mM) did not significantly enhance leptin secretion over that elicited by 5 mM glucose. Similar results were obtained when glucose was replaced by pyruvate or fructose (both 5 mM). L-Glycine or L-alanine mimicked the effect of glucose on basal leptin secretion but completely prevented stimulation by insulin. On the other hand, insulin stimulated leptin secretion when glucose was replaced by L-aspartate, L-valine, L-methionine, or L-phenylalanine, but not by L-leucine (all 5 mM). Interestingly, these five amino acids potently increased basal and insulin-stimulated leptin secretion in the presence of glucose. Unexpectedly, L-glutamate acutely stimulated leptin secretion in the absence of glucose or insulin. Finally, nonmetabolizable analogs of glucose or amino acids were without effects on leptin secretion. These results suggest that 1) energy substrates are necessary to maintain basal leptin secretion constant, 2) high availability of glycolysis substrates is not sufficient to enhance leptin secretion but is necessary for its stimulation by insulin, 3) amino acid precursors of tricarboxylic acid cycle intermediates potently stimulate basal leptin secretion per se, with insulin having an additive effect, and 4) substrates need to be metabolized to increase leptin secretion.  相似文献   

5.
Leptin is an adipocyte-derived hormone participating in the regulation of food intake and energy balance. Its secretion from fat cells is potentiated by insulin and by substrates providing ATP, whereas factors increasing cAMP level attenuate hormone release stimulated by insulin and glucose. The present experiments were aimed to determine the effect of cAMP on leptin secretion stimulated by glucose, alanine or leucine in the presence of insulin. Moreover, the effect of protein kinase A inhibition on leptin secretion was tested. To stimulate leptin secretion, isolated rat adipocytes were incubated for 2 h in the buffer containing 5 mmol/l glucose, 10 mmol/l alanine or 10 mmol/l leucine, all in the presence of 10 nmol/l insulin. Inhibition of protein kinase A (PKA) by H-89 (50 micromol/l) slightly enhanced leptin release stimulated by glucose and leucine but not by alanine. Activation of this enzyme by dibutyryl-cAMP (1 mmol/l) substantially restricted leptin secretion stimulated by glucose, alanine and leucine. The inhibitory influence of dibutyryl-cAMP on leptin secretion was totally (in the case of stimulation induced by glucose) or partially (in the case of stimulation by alanine and leucine) suppressed by H-89. These results demonstrate that leptin secretion induced by glucose, alanine and leucine is profoundly attenuated by cAMP in PKA-dependent manner. Therefore, the action of different stimulators of leptin secretion may be restricted by agents increasing the cAMP content in adipocytes. Moreover, it has also been shown that inhibition of PKA evokes the opposite effect and enhances leptin release.  相似文献   

6.
The proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited antigen-stimulated secretion and calcium influx in rat basophilic leukemia cells. In a glucose-free solution the inhibitory effects of CCCP were due to a decrease in the intracellular ATP concentration; however, when glucose was present there was no decrease in ATP. Instead, we found that in a glucose-containing saline solution, CCCP inhibited antigen-stimulated calcium uptake because it depolarized the plasma membrane, which in rat basophilic leukemia cells inhibits antigen-stimulated calcium uptake. In the presence of glucose, relatively low concentrations of CCCP inhibited calcium uptake while higher concentrations were required to inhibit secretion. In contrast, the initial antigen-stimulated rise in cytoplasmic calcium, measured with the fluorescent calcium indicator quin2, was not inhibited by CCCP. This suggests that the release of calcium from intracellular stores might, in some cases, be sufficient to support antigen-stimulated secretion. In the presence of CCCP the pH gradient becomes important for regulating the membrane potential across the plasma membrane. When cells were depolarized with CCCP and the external pH was increased, the membrane potential returned to resting levels and antigen-stimulated calcium uptake was restored. Inhibition of antigen-stimulated secretion by higher concentrations of CCCP could also be reversed by increasing the external pH.  相似文献   

7.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

8.
The increase in body and white adipose tissue weights induced by a high-fat diet were prevented by treatment with the beta3-adrenergic agonist Trecadrine. Plasma insulin levels were slightly elevated in overweight rats, while a decrease was observed in Trecadrine-treated groups. Insulin-dependent glucose uptake was impaired in adipocytes of the overweight rats in relation to lean animals. The beta3-adrenergic agonist induced an increase in insulin-stimulated glucose uptake by adipocytes as compared to the nontreated animals. In fact, Trecadrine treatment was able to restore to control values the impairment in insulin-mediated glucose uptake induced by the cafeteria diet, suggesting that Trecadrine prevents the development of insulin resistance in overweight animals. Basal leptin secretion was increased in adipocytes of the overweight rats in relation to lean animals. Trecadrine treatment induced a decrease in basal leptin secretion compared to the untreated animals. Insulin-stimulated leptin secretion reached similar levels in adipocytes of the overweight rats as in lean animals. There was a trend for insulin-induced leptin secretion to be lower at 24 h in Trecadrine-treated rats, but it did not reach statistical significance. In conclusion, adipocytes of diet-induced overweight animals have a higher basal leptin secretion, which is reduced by treatment with Trecadrine. However, neither the cafeteria diet nor the Trecadrine treatment significantly alters the ability of adipocytes to increase leptin secretion in response to insulin.  相似文献   

9.
Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. Several studies have suggested that leptin can be regulated by macronutrients intake. Arachidonic acid is a dietary fatty acid known to affect cell metabolism. Controversial effects of this fatty acid on leptin have been reported. The aim of this experimental trial was to evaluate the effect of the arachidonic acid on basal and insulin-stimulated leptin secretion and expression in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of the arachidonic acid on indices of adipocyte metabolism were also examined. Isolated adipocytes were incubated with arachidonic acid (1-200 microM) in the absence and presence of insulin (1.6 nM). Leptin secretion and expression, glucose utilization and lactate production were determined at 96 h. The arachidonic acid (200 microM) inhibited both the basal and insulin stimulated leptin secretion and expression. Glucose utilization was not affected by the acid. Basal lactate production was increased by the fatty acid at the highest concentration used (200 microM), however lactate production in presence of insulin was not modified. Finally, the percentage of glucose carbon released as lactate was significantly increased (200 microM). These results suggest that the inhibitory effect of the arachidonic acid on leptin secretion and expression may be due, al least in part, to the increase in the anaerobic utilization of glucose.  相似文献   

10.
We examined the effects of superoxide anion (O) generated by xanthine plus xanthine oxidase (X/XO) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) and muscle contractility in cultured bovine aortic smooth muscle cells (BASMC). Cells were grown on collagen-coated dish for the measurement of [Ca(2+)](i). Pretreatment with X/XO inhibited ATP-induced Ca(2+) transient and Ca(2+) release-activated Ca(2+) entry (CRAC) after thapsigargin-induced store depletion, both of which were reversed by superoxide dismutase (SOD). In contrast, Ca(2+) transients induced by high-K(+) solution and Ca(2+) ionophore A-23187 were not affected by X/XO. BASMC-embedded collagen gel lattice, which was pretreated with xanthine alone, showed contraction in response to ATP, thapsigargin, high-K(+) solution, and A-23187. Pretreatment of the gel with X/XO impaired gel contraction not only by ATP and thapsigargin, but also by high-K(+) solution and A-23187. The X/XO-treated gel showed normal contraction; however, when SOD was present during the pretreatment period. These results indicate that O(2)(-) attenuates smooth muscle contraction by impairing CRAC, ATP-induced Ca(2+) transient, and Ca(2+) sensitivity in BASMC.  相似文献   

11.
Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, has been shown to stimulate leptin mRNA expression and secretion in 3T3-L1 cells. However, other studies have reported inhibitory effects of EPA on leptin expression and secretion in vivo and in vitro. To determine the direct effects of EPA on basal and insulin-stimulated leptin secretion, isolated rat adipocytes were incubated with EPA in the absence and presence of insulin. EPA (10, 100, and 200 microM) increased basal leptin gene expression and secretion (+43.8%, P < 0.05; +71.1%, P < 0.01; and +73.7%, P < 0.01, respectively). EPA also increased leptin secretion in the presence of 1.6 nM insulin; however, the effect was less pronounced than in the absence of it. Because adipocyte glucose and lipid metabolism are involved in the regulation of leptin production, the metabolic effects of this fatty acid were also examined. EPA (200 microM) increased basal glucose uptake in isolated adipocytes (+50%, P < 0.05). Anaerobic metabolism of glucose, as assessed by lactate production and proportion of glucose metabolized to lactate, has been shown to be inversely correlated to leptin secretion and was decreased by EPA in both the absence and presence of insulin. EPA increased basal glucose oxidation as determined by the proportion of (14)C-labeled glucose metabolized to CO(2). Lipogenesis ((14)C-labeled glucose incorporation into triglyceride) was decreased by EPA in the absence of insulin, whereas lipolysis (glycerol release) was unaffected. The EPA-induced increase of basal leptin secretion was highly correlated with increased glucose utilization (r = +0.89, P < 0.01) and inversely related to the anaerobic glucose metabolism to lactate. EPA's effect on insulin-stimulated leptin secretion was not related to increased glucose utilization but was inversely correlated with anaerobic glucose metabolism to lactate (r = -0.84, P < 0.01). Together, the results suggest that EPA, like insulin, stimulates leptin production by increasing the nonanaerobic/oxidative metabolism of glucose.  相似文献   

12.
Leptin regulates appetite, inhibits food intake, and seems to increase energy expenditure. We investigated the effect of triiodothyroacetic acid (Triac), a metabolite of T3, which seems to be more thermogenic than T3, on leptin secretion and mRNA expression. Rat primary cultures of white and brown adipocytes were treated with increasing concentrations of Triac and T3. The effect of different types of serum and insulin concentrations was also tested. Serum inhibited leptin secretion and mRNA expression. Leptin secretion was also clearly inhibited by Triac and T3 in a dose-dependent manner and with similar potency. In the presence of norepinephrine (NE), Triac and T3 had a similar inhibitory effect, but the inhibition was almost complete in white adipocytes. Parallel results were found at the mRNA level, where Triac and T3 had similar inhibitory potency, both alone and with NE. We also show that insulin induced dose- and time-dependent increases in leptin secretion, reaching maximum levels at 0.5 and 3 nM insulin for white and brown adipocytes, respectively. Leptin secretion was higher in white than in brown adipocytes. The increases in leptin secretion were preceded by increases in leptin mRNA. In conclusion, these data demonstrate for the first time that Triac, like T3 and serum, inhibits leptin secretion and expression in white and brown adipocytes, whereas insulin has the opposite effect.  相似文献   

13.
Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.  相似文献   

14.
Objective: We have reported that glucose utilization regulates leptin expression and secretion from isolated rat adipocytes. In this study, we employed two antidiabetic agents that act to increase glucose uptake by peripheral tissues, metformin and vanadium, as pharmacological tools to examine the effects of altering glucose utilization on leptin secretion in primary cultures of rat adipocytes. Research Methods and Procedures: Isolated adipocytes (100 μL of packed cells per well) were anchored in a defined matrix of basement membrane components (Matrigel) with media containing 5.5 mM glucose and incubated for 96 hours with metformin or vanadium. Leptin secretion, glucose utilization, and lactate production were assessed. Results: Metformin (0.5 and 1.0 mM) increased glucose uptake in the presence of 0.16 nM insulin by 37 ± 10% (p < 0.005) and 62 ± 8% (p < 0.0001) over insulin alone, respectively. Metformin from 0.5 to 5.0 mM increased lactate production by 105 ± 43% (p < 0.025) to 202 ± 52% (p < 0.0025) and at 1.0 and 5.0 mM increased the proportional rate of glucose conversion to lactate by 78 ± 18% (p < 0.005) and 166 ± 41% (p < 0.0025), respectively. At concentrations less than 0.5 mM, metformin did not affect leptin secretion, but at 0.5 mM, the only concentration that significantly increased glucose utilization without increasing glucose conversion to lactate, leptin secretion was modestly stimulated (by 20 ± 9%; p < 0.05). Concentrations from 1.0 to 25 mM inhibited leptin secretion by 25 ± 8% (p < 0.005) to 89 ± 4% (p < 0.0001). Across metformin doses, leptin secretion was inversely related to the percentage of glucose taken up and released as lactate (r = ?0.74; p < 0.0001). Vanadium (5 to 20 μM) increased glucose uptake from 20 ± 7% (p < 0.01) to 34 ± 13% (p < 0.02) and increased lactate production at 5 μM by 17 ± 8% (p < 0.025) and 10 μM by 61 ± 20% (p < 0.02) but did not alter the conversion of glucose to lactate. Vanadium (5 to 50 μM) inhibited leptin secretion by 33 ± 6% (p < 0.0025) to 61 ± 8% (p < 0.0001). Discussion: Both metformin and vanadium increase glucose uptake and inhibit leptin secretion from cultured adipocytes. The inhibition of leptin secretion by metformin is related to an increase in the metabolism of glucose to lactate. The inhibition by vanadium most likely involves direct effects on cellular phosphatases. We hypothesize that the effect of glucose utilization to stimulate leptin production involves the metabolism of glucose to a fate other than anaerobic lactate production, possibly oxidation or lipogenesis.  相似文献   

15.
The metal-ion requirement of extracted and partially purified pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat-pads was investigated with pig heart pyruvate dehydrogenase [(32)P]phosphate as substrate. The enzyme required Mg(2+) (K(m) 0.5mm) and was activated additionally by Ca(2+) (K(m) 1mum) or Sr(2+) and inhibited by Ni(2+). Isolated fat-cell mitochondria, like liver mitochondria, possess a respiration- or ATP-linked Ca(2+)-uptake system which is inhibited by Ruthenium Red, by uncouplers when linked to respiration, and by oligomycin when linked to ATP. Depletion of fat-cell mitochondria of 75% of their total magnesium content and of 94% of their total calcium content by incubation with the bivalent-metal ionophore A23187 leads to complete loss of pyruvate dehydrogenase phosphate phosphatase activity. Restoration of full activity required addition of both MgCl(2) and CaCl(2). SrCl(2) could replace CaCl(2) (but not MgCl(2)) and NiCl(2) was inhibitory. The metal-ion requirement of the phosphatase within mitochondria was thus equivalent to that of the extracted enzyme. Insulin activation of pyruvate dehydrogenase in rat epididymal fat-pads was not accompanied by any measurable increase in the activity of the phosphatase in extracts of the tissue when either endogenous substrate or (32)P-labelled pig heart substrate was used for assay. The activation of pyruvate dehydrogenase in fat-pads by insulin was inhibited by Ruthenium Red (which may inhibit cell and mitochondrial uptake of Ca(2+)) and by MnCl(2) and NiCl(2) (which may inhibit cell uptake of Ca(2+)). It is concluded that Mg(2+) and Ca(2+) are cofactors for pyruvate dehydrogenase phosphate phosphatase and that an increased mitochondrial uptake of Ca(2+) might contribute to the activation of pyruvate dehydrogenase by insulin.  相似文献   

16.
The isoflavones--genistein and daidzein -- compounds found in high concentrations in soy play an important role in prevention of many diseases and affect some metabolic pathways. In the performed experiment it was demonstrated that genistein (5mg/kg b.w.) administered intragastrically for three days to male Wistar rats substantially diminished blood leptin level. Studies with isolated rat adipocytes revealed that this phytoestrogen strongly restricted leptin secretion from these cells. These effects were not accompanied by any changes in leptin gene expression in adipocytes. Daidzein-- an analogue of genistein -- used at similar concentrations did not affect blood leptin concentration, leptin secretion and expression of its gene. To determine the influence of genistein and daidzein on leptin release, adipocytes isolated from the epididymal fat tissue were incubated for 2h in Krebs--Ringer buffer. Leptin secretion stimulated by glucose with insulin was significantly diminished by genistein (0.25--1mM). This effect of genistein may arise from several aspects of its action in adipocytes documented in the literature such as the inhibition of glucose transport and metabolism, the attenuation of insulin signalling, the inhibition of cAMP phosphodiesterase and the stimulation of lipolysis. However, the bypassing of the restrictive action of genistein on glucose transport and glycolysis (by the use of alanine instead of glucose) and on insulin action (by the use of nicotinic acid) was not sufficient to restore leptin secretion from isolated adipocytes. It was also demonstrated that the restriction of the stimulatory influence of genistein on cAMP/protein kinase A (PKA) pathway (by the inhibition of PKA activity) did not improve leptin release. Results obtained in our experiments point at the restriction of glucose metabolism following formation of pyruvate as the pivotal reason of the inhibitory action of genistein on leptin release.  相似文献   

17.
Myosin II (MyoII) is required for insulin-responsive glucose transporter 4 (GLUT4)-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC) of MyoIIA via myosin light chain kinase (MLCK). The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy) ethane-N,N,N'',N''-tetra acetic acid, (BAPTA) (in the presence of insulin) impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.  相似文献   

18.
Norepinephrine and epinephrine, in the presence of the beta-adrenergic antagonist propranolol (10(-5) M), stimulated adipocyte pyruvate dehydrogenase at low concentrations but inhibited the enzyme at higher concentrations. The alpha-adrenergic agonist, phenylephrine, rapidly stimulated pyruvate dehydrogenase activity in a dose-dependent manner with maximal stimulation observed at 10(-6) M. The stimulation of pyruvate dehydrogenase by phenylephrine was mediated via alpha 1-receptors. Inhibition of pyruvate dehydrogenase by catecholamines was mediated via beta-adrenergic receptors, since the beta-agonist, isoproterenol, and dibutyryl cAMP produced similar effects. Like insulin, alpha-adrenergic agonists increased the active form of pyruvate dehydrogenase without changing the total enzyme activity and cellular ATP concentration. The effects induced by maximally effective concentrations of insulin and alpha-adrenergic agonists were nonadditive. The ability of phenylephrine and methoxamine to stimulate pyruvate dehydrogenase and phosphorylase and to inhibit glycogen synthase was not affected by the removal of extracellular Ca2+. Similarly, the stimulation of pyruvate dehydrogenase and glycogen synthase by insulin was also observed under the same conditions. However, when intracellular adipocyte Ca2+ was depleted by incubating cells in a Ca2+-free buffer containing 1 mM ethylene glycol bis(beta-amino-ethyl ether)-N,N,N' -tetraacetic acid, the actions of alpha-adrenergic agonists, but not insulin, on pyruvate dehydrogenase were completely abolished. Vasopressin and angiotensin II also stimulated pyruvate dehydrogenase in a dose-dependent manner with enhancement of glucose oxidation and lipogenesis. Our results demonstrate that the Ca2+ -dependent hormones stimulate pyruvate dehydrogenase and lipogenesis in isolated rat adipocytes, and the action is dependent upon intracellular, but not extracellular, Ca2+.  相似文献   

19.
Calcium uptake by an endoplasmic reticulum-enriched membrane fraction isolated from rat small intestine was investigated using a rapid filtration technique. Calcium sequestration was stimulated by the presence of ATP and released by the calcium ionophore A23187. ATP stimulation of calcium uptake was dependent on the presence of magnesium, inhibited by vanadate, and refractory to calmodulin. Kinetic studies revealed a K0.5 for the ATP-stimulated uptake of 62.5 nM Ca and a Jmax of 1.4 nmol of Ca/mg protein X min. A high dietary calcium load stimulated maximal uptake by 80% with no change in affinity. The magnitude of maximal uptake and the high affinity of this transport system suggest that the endoplasmic reticulum may play a significant role in cytosolic calcium sequestration and that extracellular calcium leads to modulation of intracellular endoplasmic reticulum calcium buffering.  相似文献   

20.
ATP-dependent calcium uptake by isolated sarcoplasmic reticulum vesicles is inhibited by concentrations of free thapsigargin as low as 10(-10) M. This effect is due to primary inhibition of the Ca(2+)-dependent ATPase which is coupled to active transport. When binding of calcium to the activating sites of the enzyme is measured under equilibrium conditions in the absence of ATP, addition of thapsigargin produces strong inhibition. On the other hand, if [tau-32P]ATP is added to ATPase preincubated with Ca2+ under favorable conditions, significant levels of 32P-phosphorylated intermediate are still formed transiently, even in the presence of thapsigargin. The phosphoenzyme, however, decays rapidly as the calcium-enzyme complex is destabilized as a consequence of ATP utilization, and formation of the thapsigargin-enzyme complex is favored. Formation of the thapsigargin-enzyme complex is also favored by Ca2+ chelation with EGTA, with consequent inhibition of the enzyme reactivity to Pi (i.e. reverse of the ATPase hydrolytic reaction). Neither the Ca(2+)- and ATP-induced Ca2+ release from junctional sarcoplasmic reticulum nor the Ca(2+)- and calmodulin-dependent ATPase of plasma membranes (erythrocyte ghosts) were found to be altered by thapsigargin at such low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号