首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted in 1987 and 1988 to quantify differences in canopy formation between an indeterminate and a determinate genotype of Vicia faba L., grown at two plant densities and three spatial distributions. The number of stems per unit area produced by determinate plants was related to the growth rate before flowering. Leaf production per stem per unit of thermal time was similar in both plant types, but twice as many leaves per stem were produced by the indeterminate cultivar. The indeterminate cultivar produced fewer and smaller leaves in the warmer and drier weather of 1988 than in 1987. The determinate genotype produced similar sizes and numbers of leaves in both years, but fewer tillers developed in 1988 than in 1987. Accordingly, leaf mass per unit ground area was greater in 1987 than in 1988 in both genotypes. Except during early flowering, relationships between leaf mass and leaf area were constant, with higher specific leaf areas in the determinate than the indeterminate genotype. Shoot dry matter partitioning into leaves was identical in both years for indeterminate plants, but differed in determinate ones.
It is concluded that canopy development is regulated through individual leaf weight and leaf number per stem in non-tillering indeterminate, and by stem numbers per unit area in tillering determinate plants.  相似文献   

2.
R. Keren  A. Meiri  Y. Kalo 《Plant and Soil》1983,74(3):461-465
Summary The response of the cotton plant (Gossypium hirsutum L.) to 9.0 and 12.5 cm intra- and 75.0 and 96.5 cm inter-row spacing was studied under irrigation with saline water (5.5 dS/m, SAR 18). In general, the dry weight per plant matter, the leaf area, number of bolls and flowers, and yield per plant were all affected significantly by intra-row spacing but, not by inter-row spacing. However, on a unit area basis, they were affected only by the inter-row spacing. This indicates that competition between plants exists when intra-row spacing is reduced, whereas no significant competition occurs due to a decrease in the inter-row spacing. Although the effect of intra-row spacing on yield for a unit area was found to be not significant, the effect of inter-row spacing was significant. Yield in plots with the conventional spacing (96.5 cm between rows and 12.5 cm between plants in the row) was 4863 kg/ha, whereas the yield in plots with 75 cm between rows was about 23% higher (5974 kg/ha). The lint percentage and the plant height were not affected significantly by either intra- or inter-row spacings.Contribution from the Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel. No.676-E, 1983 series.  相似文献   

3.
The objective of this investigation was to study (a) the yield components of sesame under different population densities and (b) their association with seed yield per unit area. The branched, non-shattering variety “Baco” was used. Rows were 60 cm apart and spacing between plants on the row was 2.5, 7.5, 15.0, 22.5, or 30.0 cm. Plant height and height of first fruit were only slightly affected by changes in plant density. More branches were produced at lower densities. Capsule length was smaller and number of seeds was lower only at the 2.5 cm spacing. Number of capsules and seed yield per plant increased in wider spacings. Number of capsules and seed yield per unit area decreased at spacings wider than 7.5 cm. Yield of seed per unit area was positively and significantly correlated with plant height, number of primary branches, number of capsules per plant, number of seeds per capsule, seed weight, seed yield per plant and number of capsules per unit area.  相似文献   

4.
The physiological response of winter wheat to reductions in plant density   总被引:4,自引:0,他引:4  
The effects of reducing the plant density of winter wheat (cv. Haven) on canopy formation, radiation absorption and dry matter production and partitioning were investigated in field experiments in 1996/97 and 1997/98. Crop densities established ranged from 19 to 338 plants m?2. Grain yield was maintained with large reductions in plant density. At low plant densities the relative growth rate of the crop increased allowing a maintenance of crop dry matter production. An 18 fold reduction in plant density led only to a six fold reduction in green area index at the beginning of stem extension and by anthesis the difference was less than two fold. Crops grown at low plant densities increased green area per plant through increased duration of tiller production, green area per shoot and shoot survival. Main stem leaf number, phyllochron and tiller production rate were not significantly affected by plant density. Radiation use efficiency was greater at the low plant densities. We propose that better radiation distribution through the canopy and increased canopy nitrogen ratio were the causative mechanisms for this increase in RUE. As a result of increased green area per shoot and a decrease in ear production, more radiation was absorbed per shoot at the low plant densities, allowing an increase in grain number per ear from 32 to 48.  相似文献   

5.
A 2‐year field experiment was conducted in northern Illinois to evaluate the effects of host plant resistance and an insecticidal seed treatment (thiamethoxam) on soybean aphids, Aphis glycines Matsumura and their predators. Densities of soybean aphids varied between the 2 years of the experiment. During both years, resistant plants experienced fewer cumulative aphid days than susceptible plants. Populations of soybean aphids on resistant plants rarely exceeded the economic injury level of 250 soybean aphids per plant. The use of thiamethoxam reduced cumulative aphid days in 2007, but not in 2008. Although soybean aphids reached densities that were sufficient to cause yield‐loss for untreated and susceptible plants, no yield‐benefit was associated with using the two management tactics in either year. This latter finding suggests that densities of soybean aphids need to be greater and sustained for a longer period of time than what we observed if the two management tactics are expected to provide a yield‐benefit. Monitoring natural enemies revealed that densities of key aphidophagous predators were relatively unaffected by host plant resistance or thiamethoxam; the effect of these management tactics on densities of predators, as well as the effectiveness of the method used to sample predators, is discussed.  相似文献   

6.
Seasonal changes in numbers of conidia of Rhynchosporium secalis on debris from previous barley crops infected with leaf blotch (primary inoculum) were monitored in 1985–86 and 1986–87. In 1986–87, changes in numbers of conidia on leaves of plants in the new winter barley crop (secondary inoculum) were also recorded. The greatest increases in production of primary inoculum were in early spring after rain, when temperatures were increasing after periods of sub-zero temperatures when there was little conidial production. Subsequently, more conidia were recovered from this debris after cycles of drying and rewetting than when it remained wet. After January 1987, amounts of secondary inoculum produced on the crop were much greater than amounts of primary inoculum on debris. Most spores were produced on the basal leaves and more spores were present on the September-sown than on the November-sown crop. Thus, while primary inoculum was a source of disease when plants were emerging, secondary inoculum on basal leaves was the main source of disease at stem extension, especially on early-sown crops.  相似文献   

7.
Nitrogen redistribution to sorghum grains as affected by plant competition   总被引:2,自引:0,他引:2  
An experiment was conducted to study nitrogen absorption and translocation in grain sorghum plants during their reproductive growth. Sorghum was grown in four row spacings: 50 and 70 cm in single rows, 80 and 120cm in double rows 20 cm apart. Plant populations were 71000, 142000 and 213000 plants/ha. After flowering, samples were taken at 12 day intervals, and the plants were divided into grains and stover, where N was analyzed. There was an increase in N concentration in lower plant populations and in wider row spacings. However, total nitrogen accumulation (in kg/ha) increased as the number of plants was increased. In the vegetative parts of the plants there were higher N concentrations in lower populations showing that there was a higher N absorption and a lower translocation to the grains. When grain sorghum was grown in 50 cm rows, there was a high N accumulation, a high N translocation to the grains and the highest yield. This row spacing led to the highest N use efficiency.  相似文献   

8.
A greenhouse study was carried out using cowpea (Vigna unguiculata (L.) Walp.) grown in Perlite® and inoculated with Nitragin® to investigate the concentration of plant nutrients and planting density required for optimum biomass production. Five concentrations (full, 0.5, 0.2, 0.1 and 0.05 strength) of Bisseling's nutrient solution and five planting densities (one to five plants per pot) were tested in a factorial randomized Graeco-Latin square design. Growth was determined as fresh and dry weights of leaves, stems, petioles, roots, flowers and pods, and whole plant.Optimum biomass production was found at 0.5 strength nutrient solution and a density of one plant per pot. Plants were more sensitive to higher planting density than to alterations of nutrient level. Over a twenty-fold range of nutrient supply, whole plant biomass yield varied at most by 44%, whereas increasing planting density from one to five plants per pot decreased biomass production by as much as 77%. There is a decrease in the shoot/root ratio as nutrient level decreases. The data suggests a potential for higher seed production at the higher densities and lowest nutrient levels, but this data was inconclusive.  相似文献   

9.
Healthy seed tubers and seed tubers with gangrene or inoculated with Rhizoctonia solani to induce stem canker were planted 38 or 76 cm apart or alternately at 38 cm spacing in 2-row (1985) or 4-row (1986) plots at Rothamsted.
At 38 cm spacing, stem canker decreased yield by 5% and 8% respectively in 1985 and 1986 and gangrene by 5% and 14%, but usually by twice these amounts when seed was spaced at 76 cm. In all experiments, yields from plots with alternate healthy and inoculated seed (50% disease) were similar to yields from healthy seed, although within these mixed populations individual plant yields from healthy seed were larger and those from diseased seed were smaller than from plots of healthy or inoculated seed respectively. Samples in August showed a similar effect on fresh weight of foliage.
Disease usually decreased the number of stemdplant but in 1985 gangrene increased stem numbers and probably accounted for small amounts of compensatory growth from neighbouring healthy plants.  相似文献   

10.
Yield and yield components of three semi-leafless pea (Pisum sativum) cultivars, of contrasting seed type/growth habit, were assessed at target planting densities of 40–140 plants/m2 on nine sites over three years. Flat-topped parabolic/asymptotic yield/density relationships were obtained. The plant density required to maximise (p max) and optimise (p opt) yield differed between cultivars: Helka, small blue, p max 126 plants/m2, p opt 101 plants/m2; Solara, large blue, p max 124 plants/m2, p opt 94 plants/m2; and Countess, white-seeded, p max 104 plants/m2, p opt 71 plants/m2. Near-maximum yields were maintained between 70 and 140 plants/m2 due to the ability of the pea crop to make compensatory increases in the number of pods per plant as density declined. Yield/density responses were influenced by site (e.g. soil type) more than by seasonal factors. The risk of yield reductions occurring at densities below 70 plants/m2 was greater on a mineral soil than on a fertile organic soil. On the basis of agronomic and economic considerations, there was no evidence that target plant densities required to optimise yield should necessarily be higher for semi-leafless cultivars studied than for conventional leafed peas.  相似文献   

11.
The plant density‐dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge , a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP‐HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (p<0.05) in the root yields and contents and the yields of the biomarkers between the different plant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb.  相似文献   

12.
Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.  相似文献   

13.
HERBERT  S. J. 《Annals of botany》1979,43(1):65-73
Components of seed yield of cv. Ultra (Lupinus albus L.) andcv. Unicrop (L. angustifolius L.) were measured when grown atthree densities. The low density (10 plants m–2) Unicropyield (34 g seed per plant) was 1.8 times that of Ultra as ithad more branches, pods and seeds per pod. Ultra seeds (310mg per seed) were heavier than Unicrop seeds (180 mg). The branchingpattern of Ultra was less dependent on plant density, henceat 93 plants m–2 it gave a higher per plant yield (7.4vs 6.4 g) than Unicrop at lower densities (83 plants m–2).Density had most influence on pod formation and only small effectson seeds per pod and seed weight. Yield components on the main-steminflorescence were influenced less by density than componentson branch inflorescences. Later formed, higher order generationsof inflorescences were most affected by increased inter- andintra-plant competition. Pod numbers on the main-stem were similarfor both species. Pods formed at higher flower nodes in Unicrop,but the lower flower nodes were less fertile than those in Ultra.Node position of flowers had no influence on seed set in main-stemUnicrop pods, but pods from higher nodes in Ultra formed fewerseeds. Seed weights in Unicrop were similar among main-stemnodes but in Ultra seed weights tended to increase at highernodes. Lupinus spp, lupins, seed yield, planting density  相似文献   

14.
KOSHKIN  E. I. 《Annals of botany》1990,65(6):581-584
Bean (Phaseolus vulgaris L.) plants were grown, one to fiveplants per pot, with a non-limiting supply of mineral nutrients.As plant density increased, seed and N yield per plant decreased,but those per pot remained fairly constant. The shoot: rootratio and the contribution of roots to total plant respirationwere also almost constant with changing density; the Q10 forshoot respiration was higher at maximal densities. However,growth respiratory C losses per plant over the growth periodon a seed dry matter of N yield basis were not dependent onplant densities tested. Phaseolus vulgaris L., yield, respiration, plant density  相似文献   

15.
To study the effects of plant density on populations of the cabbage root fly (Erioischia brassicae), cabbage, cauliflower, Brussels sprout and swede were each planted in plots with twenty-four concentric circles of plants at spacings ranging from 10 to 90 cm between the individual plants. Plants treated with a root drench of chlorfenvinphos and untreated plants were each sampled at ten plant densities which ranged from 1–5 to 68-3 plants/m2. In the absence of insecticide, the numbers of overwintering cabbage root fly pupae produced ranged from c. four per m2 at the lowest plant density to 200 per m2 at the highest. The number of pupae per m2 was proportional to plant density to the powers 0–98,0-77,0–69 and o-6i for the swede, cauliflower, cabbage and Brussels sprout crops, respectively. The magnitude of each cabbage root fly population was determined mainly by plant density but also by the cultivar used as host plant. The results suggested that, in a given locality, when changing from low to high plant density crops during a growing season it should be unnecessary to apply insecticide to control cabbage root fly; conversely, a change from high to low plant densities would necessitate an extremely efficient application of insecticide.  相似文献   

16.
The feasibility of alternating use of resistant vs. susceptible flue-cured tobacco cultivars to improve control of Globodera tabacum subsp, solanacearum (TCN) was investigated at two Virginia locations in 1984-86. Post-harvest TCN population densities were reduced in each year of the study when fenamiphos was used with a TCN-resistant cultivar (NC 567), relative to susceptible cultivars (K 326 or Mc 944). Using NC 567 with fenamipbos also reduced preplant TCN population densities in the next growing season. Egg population densities before planting in 1986 were significantly lower in plots planted with NC 567 in 1984, even when a susceptible cultivar had been planted in 1985. Use of fenamiphos with NC 567 in 1984 and 1985 further reduced preplant egg population densities in 1986. Economic returns were significantly greater in 1984 when NC 567 was used with fenamiphos, rather than a susceptible cultivar. Treatments involving fenamiphos and (or) NC 567 in 1984 and 1985 resulted in higher economic returns in 1986 than did treatments using a susceptible cultivar without fenamiphos in both previous years. Economic returns were highest in 1986 when fenamiphos and NC 567 were used in 1984 and 1985 and a susceptible cultivar was planted in 1986.  相似文献   

17.
Field studies were made in 1992 and 1993 to examine the yield components of pea inoculated with Mycosphaerella pinodes and those of healthy pea (sprayed with a mixture of flutriafol + chlorothalonil), in a split-plot design with the cv. Solara sown at different plant densities. Ascochyta blight was severe on leaves and on internodes of the basal part of the plants; pods had few lesions. The number and length of stems per plant were the same for diseased and healthy plants. The number of reproductive nodes and pods per stem were affected by disease only in 1993. In 1992 and 1993 respectively, disease caused reductions in the number of seeds per stem of 18% and 25%, and in seed size of 13.5% and 16.7%, compared with healthy plants. The harvest index and total biomass were lower in diseased than in healthy plants and seed yield was reduced by 40% in diseased plots. These results show a high relationship between the disease parameters (disease mean on stipules/nodes 8–18/ and on internodes/nodes 5–15/, percentages of stipules or internodes with a disease score 4, and percentage of stems encircled by lesions), plant density and yield reduction.  相似文献   

18.
Effect of sowing date on the optimum plant density of winter wheat   总被引:2,自引:0,他引:2  
Pressure on financial margins in UK wheat production is driving a review of all inputs, and seed represents one of the largest financial inputs in wheat production. The potential savings through exploiting the crop's ability to compensate for reduced population are, therefore, attractive. Field experiments were carried out at ADAS Rosemaund (Herefordshire, UK) in 1996/97, 1997/98 and 1998/99 to investigate the effect of sowing date on dry matter growth and yield responses of winter wheat to reduced plant population. There were three target sowing dates (late‐Septembr, mid‐October and mid‐November), six seed rates (20, 40, 80, 160, 320 and 640 seeds m?2) and four varieties (Cadenza, Haven, Soissons and Spark). Grain yield was significantly affected by plant population with a mean reduction from 9.2 to 5.5 t ha?1 as plant number was reduced from 336 to 13 m?2. In addition, there was a significant interaction between plant density and sowing date. There was, however, no interaction between variety and plant population in terms of yield, except when lodging affected high plant populations of lodging susceptible varieties. The experiments demonstrated scope for reducing plant populations below the current target of 250–300 plants m?2; however, the degree of reduction was dependent on sowing date. Over the three years, the average economic optimum plant density was 62 plants m?2 for late‐September, 93 plants m?2 for mid‐October, and 139 plants m?2 for mid‐November sowings. Compensation for reduced population was due to increased shoot number per plant, increased grain number per ear and to a lesser extent increased grain size. Higher economic optimum plant densities at later sowing dates were due to reduced tiller production and hence ear number per plant. The other compensatory mechanisms were unaffected by sowing date.  相似文献   

19.
The dependency of the anti-herbivore defense on ant–plant protective mutualism often varies depending on abiotic and biotic conditions. Although intraspecific competition is a primary interaction between neighboring plants, its effects on ant–plant mutualisms have yet to be sufficiently elucidated. In order to determine the effects of intraspecific competition and competitor genotype on ant–plant mutualisms, I conducted competition and ant-removal experiments and examined their effects on damage to the leaves of Urena lobata var. tomentosa plants. I found that larger numbers of worker ants visited the plants growing with non-siblings than plants growing alone and that plants growing with non-siblings had a higher shoot to root ratio and secreted greater volumes of extrafloral nectar than plants growing alone and/or with siblings. Under the presence of both sibling and non-sibling competitors, I observed that when ants were removed from plants, those grown with conspecific neighbors were characterized by a higher percentage of damaged leaf area than plants harboring ants. The effect of ant exclusion on leaf damage was more pronounced in plants grown with non-siblings than those grown near siblings. However, when the plants were grown alone, I detected no significant difference in percentage leaf damage between the ant-excluded and ant-harboring plants. The results indicate that neighboring plants can exert strong effects on ant–plant protective mutualisms, thereby highlighting the need to take into consideration plant–plant interactions in studies on these mutualistic associations.  相似文献   

20.
Ravenna grass, Tripidium ravennae (L.) H. Scholz, is known to produce an abundance of biomass, but how plant density affects its biomass potential remains unknown. The objectives were to determine the effects of plant density on biomass yield; plant growth traits; biomass?carbon, nitrogen, and ash concentrations; heating value; nitrogen removal; and sucrose concentration in leaves and culms. The treatments consisted of five plant densities (1,250; 2,500; 5,000; 10,000; and 20,000 plants per hectare) in a randomized complete block design with four blocks. Plots were nonirrigated, unfertilized, and harvested once during the dormant season each year. Data were collected from 2015?2019. Dependent variables that varied with plant population density (p < .05) were biomass yield, number of reproductive culms per plant, reproductive culm diameter, reproductive culm sucrose concentration, and nitrogen removal with biomass. Biomass yield ranged from 5.6 to 16.3 Mg/ha for plant densities of 1,250–20,000 plants per hectare, respectively. Combined over years, nonlinear regression of the data showed the equation for biomass yield to plateau at 16.2 Mg/ha at a plant density of 10,640 plants per hectare. As plant density increased, the number of reproductive culms per plant, culm diameter, and culm sucrose concentration significantly decreased. At 1,250 plants per hectare, the number of reproductive culms per plant, culm diameter, and culm sucrose averaged 70, 10.2 mm, and 63.2 g/kg, respectively. Nitrogen removed with biomass significantly increased as biomass yield increased with plant density. At a density of 10,000 and 20,000 plants per hectare, the amount of nitrogen removed annually in the harvested biomass averaged 88 kg/ha. The data suggest that 10,000 plants per hectare would produce the greatest annual biomass yields; however, research is needed to determine the nutrient requirement for Ravenna grass to sustain biomass production at that density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号