首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study localized malondialdehyde (MDA, a toxic byproduct of lipid peroxidation), nitrotyrosine [NT, a cytotoxic byproduct of nitric oxide (NO)], and nitric oxide synthase isomers (NOS) in normal and diseased human corneas. Normal corneas (n=11) and those with clinical and histopathological diagnoses of keratoconus (n=26), bullous keratopathy (n=17), and Fuchs' endothelial dystrophy (n=12) were examined with antibodies specific for MDA, NT, eNOS (constitutive NOS), and iNOS (inducible NOS). Normal corneas showed little or no staining for MDA, NT, or iNOS, whereas eNOS was detected in the epithelium and endothelium. MDA was present in all disease groups, with each group displaying a distinct pattern of staining. NT was detected in all keratoconus and approximately one half of Fuchs' dystrophy corneas. iNOS and eNOS were evident in all the diseased corneas. Keratoconus corneas showed evidence of oxidative damage from cytotoxic byproducts generated by lipid peroxidation and the NO pathway. Bullous keratopathy corneas displayed byproducts of lipid peroxidation but not peroxynitrite (MDA but not NT). Conversely, Fuchs' dystrophy corneas displayed byproducts of peroxynitrite with little lipid peroxidation (NT > MDA). These data suggest that oxidative damage occurs within each group of diseased corneas. However, each disease exhibits a distinctive profile, with only keratoconus showing prominent staining for both nitrotyrosine and MDA. These results suggest that keratoconus corneas do not process reactive oxygen species in a normal manner, which may play a major role in the pathogenesis of this disease.  相似文献   

2.
The laminin composition (LMalpha1-alpha5, beta1-beta3, gamma1 and gamma2 chains) of normal corneas and corneal buttons from keratoconus, bullous keratopathy (BKP), Fuchs' dystrophy + BKP, Fuchs' dystrophy without BKP and scar after deep lamellar keratoplasty (DLKP) was investigated with immunohistochemistry. The epithelial basement membranes (BMs) of both normal and diseased corneas contained LMalpha3, alpha5, beta1, beta3, gamma1 and gamma2 chains. The epithelial BM morphology was altered in the different diseases. Scarring was associated with irregular BM and ectopic stromal localization of different laminin chains. The Descemet's membrane (DM) contained LMalpha5, beta1 and gamma1 chains in all cases and additionally LMbeta3 and gamma2 chains in the majority of keratoconus corneas. The interface in the DLKP cornea had patches of LMalpha3, alpha4, alpha5, beta1 and beta2 chains, and an extra BM-like structure under the Bowman's membrane. These results suggest that laminin chains participate in the process of corneal scarring and in the pathogenesis of some corneal diseases. The novel finding of LMalpha3, beta3 and gamma2 in the DM of keratoconus buttons indicates that this membrane is also involved in the disease and that some cases of keratoconus may have a congenital origin, without normal downregulation of the LMbeta3 chain.  相似文献   

3.
4.
Our purpose was to elucidate the pathways of apoptosis of corneas with Fuchs' dystrophy and pseudophakic bullous keratopathy. Sixteen corneal buttons (14 patients, median age 73 years) with Fuchs' dystrophy, 13 with pseudophakic bullous keratopathy (PBK) (13 patients, median age 69 years) and 8 buttons (8 patients, median age 59 years) from enucleated eyes with chorioideal melanoma (controls) were analysed histologically. Immunohistochemical analysis was performed to investigate the expression of p21, p27, p63, survivin, CD95, cathepsin, bax, bcl-2 and Ki67. Positive immunohistochemical reactions were detected in epithelial cells of the corneas, but keratocytes and endothelial cells were not positive in any of the groups or stainings. The number of p27 and survivin positive epithelial cells was significantly lower (p=0.048 and 0.041) and the number of cathepsin positive epithelial cells was significantly higher (p=0.004) in Fuchs' dystrophy corneas compared to controls. In pseudophakic bullous keratopathy, p21 and p27 positive epithelial cells were present in a significantly lower (p=0.02 and 0.005) number than in controls. We conclude that genetically programmed cell death is related to the p27, cathepsin and survivin pathways in Fuchs' dystrophy and to the p21 and p27 pathways in pseudophakic bullous keratopathy.  相似文献   

5.
The aim of the present study was to investigate the expression pattern of different cell adhesion molecules in corneal stromal dystrophies. Fifteen corneal buttons from patients diagnosed with three different types of stromal corneal dystrophies and healthy corneas were investigated. Paraffin embedded sections were stained immunohistochemically with monoclonal antibodies against human intercellular adhesion molecule-1 (ICAM-1), endothelial selectin (E-selectin) and endothelial cadherin (E-cadherin) using the avidin-biotin-peroxidase-complex technique. The sections were compared to normal eye bank controls. In corneas from granular dystrophy patients ICAM-1 was expressed focally in epithelial cells and in keratocytes, and expressed diffusely in endothelial cells. In corneas from macular dystrophy patients diffuse epithelial staining was observed and the stromal and endothelial expression was found to be similar to that of granular dystrophy. In lattice dystrophy, only the epithelial cells and endothelium were intensively positive for ICAM-1. E-selectin was not present on any layer of the corneal specimens. E-cadherin was observed only in the epithelium of all three types of corneal dystrophies. Normal corneas did not express any of the investigated adhesion molecules. We found different expression patterns of adhesion molecules in corneas from stromal dystrophies. Our results suggest that adhesion molecules may be involved in the pathogenesis of corneal stromal dystrophies.  相似文献   

6.
We have modified an existing technique in order to perform DNA analysis by flow cytometry (FCM) of corneal epithelium from the mouse, rat, chicken, rabbit, and human. This protocol permitted an investigation of human corneal scrapings from several categories: normal, aphakic bullous keratopathy (ABK), keratoconus (KC), Fuch's dystrophy, edema, epithelial dysplasia, and lipid degeneration. No abnormal characteristic cell-kinetic profile was detected when averaged DNA histograms were compared statistically between the normal and either ABK, KC, edema, or Fuch's dystrophy groups. Abnormal DNA histograms were recorded for cell samples that were taken 1) from three individuals who had epithelial dysplasia and 2) from one individual diagnosed with lipid degeneration. The former condition was characterized by histograms that had a subpopulation of cells with an aneuploid amount of DNA or had higher than normal percentages of cells in the S and G2 + M phases of the cell cycle. Corneal cells from the patient who had lipid degeneration had an abnormally high percentage of cells in the G2 + M phases of the cell cycle. The availability of accurate DNA flow cytometric analysis of corneal epithelium allows further studies on this issue from both experimental and clinical situations.  相似文献   

7.
For immunocytochemistry, cultured bovine corneal endothelial cells (CBCEC) and bovine corneal cryosections were utilized. Preparations were fixed, permeabilized, and incubated with primary rabbit anti-rat aquaporin 1 (AQP1) antibody followed by rhodamine-conjugated secondary antibody, and were counter-stained with Sytox nuclear acid stain. Confocal microscopy of CBCEC in the x, y, and z planes showed rhodamine fluorescence, indicating the presence of AQP1 antibody localized to the apical and basolateral domains of the plasma membrane, but not to the membranes of intracellular compartments or other subcellular locations. Preabsorption with control antigenic peptide yielded no positive staining. Similar results were obtained using freshly dissected bovine corneas; in addition, these images showed AQP1 distributed to the plasma membranes of keratocytes. No AQP1 staining was seen in corneal epithelium, and no staining was observed in CBCEC layers exposed to AQP3, AQP4, and AQP5 antibodies.  相似文献   

8.
A series of biochemical analyses were carried out with keratoconus and normal corneas to determine the amount of stromal collagen, degree of posttranslational modification of collagen and the solubility of collagen. Our results revealed there was no obvious alteration in the degree of posttranslational modification of collagen in keratoconus corneas. However, the amount of collagen decreases and solubility of collagen increases in keratoconus corneas. It was also found that keratoconus corneas in organ culture produce substantially more collagenase and gelatinase activities than normal corneas. Our results suggest that keratoconus may represent a collagenolytic disease.  相似文献   

9.
10.
In this study, temporal and spatial distribution of three TGF‐β isoforms and their downstream signaling pathways including pSmad2 and p38MAPK were examined during fibrotic wound repair. In normal chick corneas, TGF‐β1, ‐2, and ‐3 were weakly detected in Bowman's layer (BL). In healing corneas, TGF‐β1 was primarily deposited in the fibrin clot and the unwounded BL. TGF‐β2 was highly expressed in healing epithelial and endothelial cells, and numerous active fibroblasts/myofibroblasts. TGF‐β3 was mainly detected in the unwound region of basal epithelial cells. α‐Smooth muscle actin (α‐SMA) was initially appeared in the posterior region of repairing stroma at day 3, and was detected in the entire healing stroma by day 7. Notably, α‐SMA was absent in the central region of healing stroma by day 14, and its staining pattern was similar to those of TGF‐β2 and p38MAPK. By contrast, pSmad2 was mainly detected in the fibroblasts. In normal cornea, laminin was mainly detected in both epithelial basement membrane (BM) and Descemet's membrane (DM). By contrast to reconstitution of the BM in the wound region, the DM was not repaired although endothelial layer was regenerated, indicating that high levels of TGF‐β2 were released into the posterior region of healing stroma on day 14. High levels of α‐SMA staining, shown in cultured repair stromal cells from healing corneas on day 14 and in TGF‐β2 treated normal stromal cells, were significantly reduced by p38MAPK inhibition. Collectively, this study suggests that TGF‐β2‐mediated myofibroblast transformation is mediated, at least partly, by the p38MAPK pathway in vivo. J. Cell. Biochem. 108: 476–488, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of [3H]glucosamine or [2-3H]mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.  相似文献   

12.
We measured the expression of aquaporin (AQP)1 -3 in kidneys of yarkand hares (Lepus yarcandensis )to understand the role of AQPs in adaptation to drought environment. We used H. E staining methods for detecting the histological structure of kidneys,and immunohistochemistry and western blotting for detecting expression of AQP1 - 3 in kidneys,
and also compared the results with those from domestic rabbits. Results showed that AQP1 is localized in capillary endothelial cell cytoplasm in glomeruli,and continued uninterrupted from proximal straight tubules into descending thin limbs in the outer medulla. AQP2 is observed in epithelial cells membrane in collecting ducts. AQP3 is localized in connecting tubules of the cortex and the outer medulla and epithelial cell basal membrane in collecting ducts. The expression of AQP1 -3 in kidneys is greater and the protein content is higher in yarkand hares than in domestic rabbits. These results indicate that the yarkand hare has increased the expression of aquaporins in kidneys,strengthened renal reabsorption of water and the ability for concentrating the urine,improving the ability for adaptation to arid environment.  相似文献   

13.
We have examined the collagens synthesized by cultures of normal human corneal stromal cells. Radioactively labeled products, accumulated in the culture medium during a 24-h labeling period, were treated with pepsin and analyzed by SDS-polyacrylamide gel electrophoresis. The cell layer collagen was characterized by 2.6 M and 4.4 M salt fractionation at neutral pH. CM-cellulose column chromatography, SDS-gel electrophoresis, and cyanogen bromide peptide mapping. Type I alpha 1 and alpha 2 chains were the predominant components in both the cell layer and the medium fractions of normal human stromal cultures; type III collagen was found mostly in the culture medium; and type V collagen was associated with the cell layer. Immunofluorescent techniques used to visualize collagen deposition in the cell layer confirmed the presence of these collagen types. Keratoconus is a disease characterized by thinning and scarring of the central cornea. Stromal cells grown from keratoconus corneas produced similar types of collagen (types I, III, and V) as normal human controls. Cells from keratoconus patients, however, contained more type V collagen in the cell layer than did normal cells. The difference was seen only in the 4.4 M salt precipitates. Since type V collagen is one component of cell surfaces, the primary defect in cultures from keratoconus corneas could involve cell membrane and cell surface components.  相似文献   

14.
15.
Total protein and collagen content in normal and keratoconus corneas were determined. The protein content (expressed as a function of dry weight) in all keratoconus corneal samples was lower than that found in normal corneas. However, among the 11 keratoconus corneas examined, only 7 (group A) had the same hydroxyproline content (expressed as a function of dry weight) as normal corneas; 4 others (group B) showed significantly less. In tissue culture, four strains derived from keratoconus stroma (group I) produced total protein at the same rate as cells from normal controls. Four other strains (group II), however, had a decreased rate of protein synthesis. The amount of collagenous protein synthesized per microgram DNA by group I strains was similar to that found in normal cultures, whereas it was significantly reduced in group II cultures. We suggest that group I strains represent group A corneas. Group II strains, with a reduced level of both protein and collagen synthesis, may represent group B corneas. The defect in this group appears to be decreased total synthetic activity of corneal cells. The variation in our results suggests that keratoconus is a heterogeneous disease. The heterogeneity may explain the contradictory data that exist in the literature.  相似文献   

16.

Purpose

To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas.

Methods

Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin).

Results

Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment.

Conclusion

The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking.  相似文献   

17.
Keratoconus: matrix metalloproteinase-2 activation and TIMP modulation   总被引:1,自引:0,他引:1  
Keratoconus is an ocular condition that causes corneal thinning, cone formation and scarring. In view of a hypothesis that activated MMP-2 may initiate or facilitate disease progression, the MMP-2/TIMP systems of stromal cells derived from normal and keratoconic corneas have been compared. To achieve this, stromal cell cultures were established from normal, clear keratoconic (KCS-1) and scarred keratoconic (KCS-2) corneas. The secreted MMP-2 was assayed using [(3)H]Type IV collagen and analysed by zymography. Optimally maintained and nutrient deprived cells were subsequently incubated with [(3)H]lysine. The secreted radiolabelled macromolecules were separated and quantified. The results obtained indicated that optimally maintained KCS-1 stromal cells produced more MMP-2 than normal stromal cells but not TIMP. Nutrient deprivation induced MMP-2 activation and cell death. Surviving cells upregulated TIMP-1 synthesis and in this respect became similar to the KCS-2 stromal cells that did not excessively generate activated MMP-2 or die as a consequence of nutrient deprivation. From these results, it was concluded that KCS-1 stromal cells over-expressed MMP-2 without increasing TIMP production. This may facilitate MMP-2 activation in vivo and hence advance the keratoconic condition. KCS-2 cultures over-expressed both MMP-2 and TIMP-1. Because TIMP-1 inhibits MMP-2 activity and protects against cell death it may be of significance in initiating repair processes and curtailing keratoconus.  相似文献   

18.
Keratoconus involves thinning and central protuberance of the cornea, scarring and significantly decreased vision. It is one of the major causes of corneal transplantation in this country, but the etiology of this disorder is unclear. In the present study stromal keratocytes were isolated and cultured from normal and keratoconus human corneas. Consistent with the phenotype of cornea thinning, we observed an increased gelatinolytic activity in keratoconus cultures. Characterization of enzyme properties in these cells suggested that gelatinase (type IV collagenase) was responsible for the majority of proteolytic activity found in this system. This elevated gelatinolytic activity was present in spite of lower amounts of total protein being produced by the keratoconus cultures.  相似文献   

19.
Monoclonal antibodies highly selective for developmentally regulated antigens present in the cornea (Zak and Linsenmayer, Dev. Biol. 99, 373-381, 1983) have been used to immunohistochemically evaluate differentiation in intact chick corneas cultured on the chorioallantoic membrane (CAM) of host embryos. One antibody is directed against the epithelial cell layer and the other is against the corneal stromal matrix. It has been established that both antigens recognized by the antibodies are expressed de novo in young explanted corneas and that the stromal matrix antigen is a product of the corneal fibroblasts. Thus expression of the antigens can be used as criteria for overt differentiation of the respective cell types. The antibodies have been employed to assess when the corneal epithelial and stromal cells become capable of autonomous differentiation within isolated corneas. To accomplish this, corneas of various ages were explanted with and without adjacent pericorneal tissues. The results indicate that, under the culture conditions employed, corneal stromal differentiation is dependent on the presence of the lens until stage 28 (51/2-6 days of development), which is the time when invasion of the stroma by pericorneal mesenchymal cells is initiated. After stage 28, the stromal matrix antigen was expressed by isolated corneas irrespective of the presence of the lens. Possibly the lens acts by maintaining the integrity of the corneal endothelial monolayer and thus promoting normal migration of pericorneal mesenchymal cells into the primary corneal stroma, where they undergo differentiation. Conversely, differentiation of the corneal epithelium was independent of any pericorneal structure from the earliest stage examined (41/2-5 days of development). It was even independent of overt stromal differentiation, thus suggesting an early and strong determination for this tissue.  相似文献   

20.
通过检测塔里木兔(Lepus yarcandensis)胰腺中水通道蛋白(aquaporin,AQP)1和4的表达和分布情况,以探讨水通道蛋白在塔里木兔适应干旱缺水环境中的作用,采用常规 H.E.染色观察塔里木兔胰腺组织学结构,采用免疫组织化学检测AQP1和AQP4在胰腺中的分布位置及表达,并与家兔进行比较。结果显示,AQP1在微血管内皮细胞,血细胞,泡心细胞和小叶内导管上皮细胞均有表达;AQP4在小叶间导管基底膜和胰岛细胞膜上有表达。与家兔相比,AQP1 在塔里木兔胰腺外分泌部的表达较弱,而在小叶内导管的表达较强;AQP4在塔里木兔胰腺内分泌部的表达较低。以上结果说明,AQP1在塔里木兔胰腺小叶内导管的表达上调,推测可能加强了浓缩胰液的能力,以尽量保住体内的水分,是塔里木兔对干旱缺水环境的适应性调节。与家兔相比,塔里木兔胰腺AQP1和AQP4的表达均较低,说明塔里木兔胰腺水液代谢能力比家兔低,这可能与塔里木兔所食食物营养匮乏有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号