首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clones of Plumbago zeylanica were micropropagated using nodal culture. The application of random amplified polymorphic DNA (RAPD) in assessing the genetic integrity of the micropropagated plants was evaluated by polymerase chain reaction. Twenty arbitrary decamers were used to amplify genomic DNA from in vitro and in vivo plant material to assess the genetic fidelity. All RAPD profiles from micro-propagated plants were monomorphic and similar to those of field grown mother plants. No polymorphism was detected within the micropropagated plants.  相似文献   

2.
Bulk seedlots of two unpedigreed multiprovenance seed production areas (SPAs) each of Eucalyptus camaldulensis and Eucalyptus tereticornis and one pedigreed seedling seed orchard (SSO) of E. tereticornis were planted in genetic gain trials at three southern Indian trial sites. At the time of seed collection, fewer than 30% trees flowered in these orchards, except in one E. camaldulensis SPA where 73% of the trees flowered, which had an estimated outcrossing rate of 86%. The E. tereticornis SSO was dominated by pollen from five highly fecund families of the Indian Mysore gum land race, which contributed 59% of the fruits produced. The SPA and SSO seedlots were compared with a bulked natural-provenance seedlot of E. camaldulensis (Morehead, Laura, and Kennedy Rivers, Queensland), another natural-provenance seedlot (Petford, Queensland), commercial eucalypt clones at two sites, and a Mysore gum seedlot at one site. At 3 years, progeny from all the four SPAs displayed good survival (79–93%) and performance similar to that of the natural provenances and the commercial clones. Progeny from the E. tereticornis SSO had significantly lower growth (at two sites) and lower survival at all three test sites. The Mysore gum seedlot displayed high fecundity and lower growth but better survival than the SSO progeny. Seed orchard genetic composition and flowering contributions thus affected progeny performance and the extent to which orchard genetic diversity was captured in the progeny. SPA progeny displayed greater fecundity than the natural provenances, indicating a response to selection for fertility.  相似文献   

3.
AFLP genetic maps of Eucalyptus globulus and E. tereticornis   总被引:8,自引:0,他引:8  
 Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient technique for detecting large numbers of DNA markers in eucalypts. We have used AFLP markers in a two-way pseudo-testcross strategy to generate genetic maps of two clones of different Eucalyptus species (E. tereticornis and E. globulus). Of 606 polymorphic fragments scored, 487 segregated in a 1 : 1 ratio, corresponding to DNA polymorphisms heterozygous in one parent and null in the other. In the maternal E. tereticornis map, 268 markers were ordered in 14 linkage groups (919 cM); the paternal E. globulus map had 200 markers in 16 linkage groups (967 cM). Results from PGRI software were compared with MAPMAKER. The average density of markers was approximately 1 per 3.9 cM. Framework markers were ordered with an average confidence level of 90%, covering 80–100% of the estimated Eucalyptus genome size. In order to investigate the homologies between the E. tereticornis and the E. globulus genetic linkage maps, we included 19 markers segregating 3 : 1 in the analysis. Some homeologous linkage groups were recognized. The linkage data developed in these maps will be used to detect loci controlling commercially important traits. Received: 17 July 1997 / Accepted: 13 October 1997  相似文献   

4.
Random amplified polymorphic DNA (RAPD) markers were used to analyze genetic fidelity of micropropagated teak (Tectona grandis L.) clones with respect to subcultural passage. Of the twenty primers screened, no variation in RAPD profiles was noticed in the in vitro clones of fifth, tenth, fifteenth and twentieth passage in comparison to the in vivo mother plants. Only one micropropagated plant of twenty-fifth subcultural passage, however, differed from the in vivo ones. It revealed the appearance of a new polymorphic DNA fragment (molecular mass 379 kb) in case of primer OPB-08. This primer, manifesting detectable variation, may be utilized as a diagnostic marker for assessing genetic fidelity of micropropagted teak plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.  相似文献   

6.
RAPD markers were used to assess genetic fidelity of 23 micropropagated plants of a single clone (L34) of Populus deltoides. Eleven arbitrary 10-base primers were successfully used to amplify DNA from in vivo and in vitro material. Of these, 5 distinguished a total of 13 polymorphisms common across 6 micropropagated plants. Apart from these 6 plants, the amplification products were monomorphic across all the micropropagated plants, the mother plant and 4 additional field-grown control plants. Our results show that RAPD markers can be used to gain rapid and precise information about genetic similarities or dissimilarities in micropropagation systems that might not be so easily evident from other commonly used techniques.  相似文献   

7.
Summary Randomly amplified polymorphic DNA (RAPD) techniques were applied to assess genetic instability among micropropagated tea [Camellia sinensis (L.) O. Kuntze] eultivar ‘T-78’. Out of 49 random 10-mer primers, 11 generated polymorphism in four out of 17 micropropagated plants and one mother plant. A total of 221 bands, ranging from 525 bp to 2.5 kb, were produced by the 49 primers. Twenty-four were polymorphic for those four plants. However, the remaining bands were monomorphic among all plants. Polymorphism among those four plants showed an identifical banding pattern suggesting the occurrence of a single mutation. Our results demonstrated that RAPD can be used successfully to determine the genetic instability among micropropagated plants which otherwise were morphologically indistinguishable.  相似文献   

8.
An efficient in vitro propagation method using enhanced axillary branching cultures produced plants from nodal explants of three mature, elite tea clones: diploid UPASI 26 and UPASI 27 (2n=2x=30) representing Camellia sinensis (China type) and triploid UPASI 3 (2n=3x=45) representing C. assamica ssp. assamica (Assam-India type). The genetic fidelity of the micropropagated plants of these three tea clones was assessed by analysing their nuclear, mitochondrial (mt), and chloroplast (cp) genomes using multiple molecular DNA markers. A total of 465, 446 and 462 genetic loci were produced with RFLP, RAPD and ISSR fingerprinting in the micropropagated plants and the corresponding mother plant of C. sinensis clone U (UPASI) 26, and C. assamica ssp. assamica clones U3 and U27, respectively. RFLP fingerprinting was performed using six restriction endonuclease digests and 14 mt and cp gene probes in 84 enzyme-probe combinations. For PCR fingerprinting, 50 RAPD and SSR primers were used for amplifications. The micropropagated plants of both the U3 and U27 clones revealed complete stability in the 462 and 446 genetic loci analysed. In comparison, 36 (7.7%) of the 465 loci were polymorphic among micropropagated plants of the U26 clone. The observed polymorphic loci were not restricted to a particular genome (nuclear or organellar), although a relatively low (7.43%) level of polymorphism was observed in the nuclear as compared to the mt genome (16.3%). ISSR fingerprinting (12.8%) detected more polymorphic loci than RAPD fingerprinting (4.28%). No polymorphism was observed in the cp genome of the micropropagated plants of the three tea clones. The rigorous screening of nuclear and two organellar genomes has demonstrated, for the first time, subtle genetic variation at the DNA sequence level in organized meristem-derived micropropagated plants of tea. Clearly, this is another example demonstrating that organized meristem cultures are not always genetically true-to-type. The genomic changes in tea clones are genotype dependent rather than culture condition dependent.  相似文献   

9.
An efficient in vitro propagation system has been developed for rapid micropropagation of Soapnut (Sapindus trifoliatus Linn.), a medicinally and economically important tree from nodal (axillary bud) segments of seedlings. The frequency of shoot regeneration from seedling node explant was influenced by the age of the seedlings, growth regulators and successive transfer of the mother explant. Explants from 4-week-old seedlings yielded the maximum shoot regeneration frequency (97.22%) on full-strength MS medium supplemented with 1.0 mg l−1 of 6-benzylaminopurine (BAP). After harvesting the newly formed shoots, the mother explants transferred to same medium subsequently produced a maximum of 5.16 shoots per explant after third passage. Further improvement in the morphogenic response occurred when the nodal explants excised from in vitro regenerated shoots were employed, and 6.89 shoots per explant were obtained on the same medium after the third subculture. Optimal rooting (91.67%) was obtained by placing the micro-shoots in liquid MS medium with 1.0 mg l−1 IBA for 24 h and then transferring to the agar solidified MS medium devoid of IBA. The micropropagated shoots with well-developed roots were acclimatized and successfully transplanted to soil with 90% survival rate. Genetic stability of the regenerated plants was assessed using random amplified polymorphic DNA (RAPD). The amplification products were monomorphic in micropropagated plants and similar to those of mother plant. No polymorphism was detected revealing the genetic integrity of micropropagated plants. This is the first report of an efficient protocol for regeneration of S. trifoliatus through organogenesis, which can be applied for further genetic transformation assays and pharmaceutical purposes.  相似文献   

10.
Gardenia jasminoides Ellis is an evergreen tropical plant and favorite to gardeners throughout the world. Several studies have documented that in vitro micropropagation can be used for clonal propagation of G. jasminoides Ellis, the efficiency remained low. In addition, no information is available on the genetic and epigenetic fidelity of the micropropagated plants. Here, we report on a simplified protocol for high efficient micropropagation of G. jasminoides Ellis cv. “Kinberly” based on enhanced branching of shoot-tips as explants. The protocol consisted of sequential use of three media, namely, bud-induction, elongation and root-induction. By using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation sensitive amplified polymorphism (MSAP), we analyzed the genetic and DNA methylation pattern stability of 23 morphologically normal plants randomly taken from a sub-population (>100) of micropropagated plants originated from a single shoot-tip. We found that of >1,000 scored AFLP bands across the 23 micropropagated plants, no incident of genetic variation was detected. In contrast, of 750 scored MSAP bands, moderate but clear alteration in several DNA methylation patterns occurred in the majority of the 23 micropropagated plants. The changed methylation patterns involved both CG and CHG sites representing either hyper- or hypo-methylation, which occurred without altering the total methylation levels partly due to concomitant hyper- and hypo-methylation alterations. Our results indicated that epigenetic instability in the form of DNA methylation patterns can be susceptible to the in vitro micropropagation process for G. jasminoides Ellis, and needs to be taken into account in the process of large-scale commercial propagation of this plant.  相似文献   

11.
A newly developed and novel DNA marker technique, i.e. start codon targeted (SCoT) polymorphic markers that target plant gene regions were used to assess genetic stability of in vitro raised plants of Cleome gynandra multiplied by enhanced bud proliferation from nodal segments. Seven randomly selected micropropagated plants, following at least 2 months of growth in the greenhouse along with mother plant were subjected to molecular analysis. Of 24 primers screened, 15 primers produced unambiguous and reproducible bands. All 15 primers generated a total of 65 fragments, with a mean of 4.3 ranging 2–7 per primer. No polymorphism was detected in regenerated plants and the mother plant, revealing the genetic fidelity of the in vitro raised plantlets. To verify the results of SCoT analysis, random amplified polymorphic DNA (RAPD) markers were also used for the assessment of genetic fidelity of tissue culture raised plants. The monomorphic banding pattern in micropropagated plants and the mother plant obtained from SCoT and RAPD analysis confirms the genetic stability of the in vitro raised plants and demonstrates the reliability of our micropropagation system for C. gynandra, an important C4 plant.  相似文献   

12.
The eucalypt‐feeding psyllid Glycaspis brimblecombei Moore (Hom.: Psyllidae), an Australian insect, is reported for the first time in Europe. It was initially detected in Portugal and Spain, in September 2007, on Eucalyptus camaldulensis Dehn. At present, G. brimblecombei has only been found associated with E. camaldulensis and E. tereticornis Smith, being apparently absent from E. globulus Labill., the main eucalypt species planted on the Iberian Peninsula. Generalist predators, such as ants, spiders and ladybeetles, were observed in trees attacked by G. brimblecombei, but no psyllid parasitoids were detected.  相似文献   

13.
Salacia chinensis L., a perennial medicinal plant, is well-known for its well-documented anti-diabetic properties. The daily growing demand in pharmaceutical industry is stimulating the conservation and wide-ranging production of the plant using plant tissue culture techniques (micropropagation). In the present study, the plants generated by direct micropropagation from nodal explants were assessed using fluorescently labeled RAPD (FRAPD) primers. Although standard RAPD primer bands in agarose gel showed genetic stability, using FRAPD analysis in genetic DNA sequencer as a novel strategy showed more accurate and reliable method has indicated by the evidence in 5% genetic variation. Antioxidant and anti-diabetic activities of micropropagated plants versus mother plant were examined using DPPH, FRAP, α-amylase, and α-glucosidase assays. The results showed that the micropropagated plants, which are able to produce higher amount of secondary metabolites than the mother plant, possess higher in vitro antioxidant and anti-diabetic properties.  相似文献   

14.
Bacopa monnieri (L.), a highly endangered miracle medicinal herb with global interest, is one of the popular ancient Indian ayurvedic plants. With ever increasing demand for Bacopa based formulations in pharmaceutical industries, there is a need to preserve the stocks of the plant through biotechnological approaches. Randomly amplified polymorphic DNA (RAPD) fingerprinting approach was applied to analyze the genetic stability of 19 different B.monnieri plants randomly selected after micropropagation, regrowth from alginate encapsulated uninodal cuttings (before and after storage at 4°C) and hardening with the mother plant (wild type). 16 arbitrary decamer primers amplified a total of 334 reproducible distinct DNA fragments ranging from 180 to 1,500 bp, of which 262 (78.4%) were monomorphic and the rest (21.5%) were polymorphic with an average of 20.8 bands per primer. The extent of polymorphism was low to moderate. Primers OPAK 14, OPM 15 and OPD 13 generated 69, 46 and 42% polymorphic patterns. Primers OPA 04, OPU 13 and OPD 08 generated 100% monomorphic pattern. Similarity matrix based on Jaccard’s coefficient revealed that pair wise values between the wild type and its analyzed plants ranged from 0.00 to 0.92 and among the micropropagated, synthetic seed derived and hardened plants, the range of genetic distance is from 0.67 to 0.92. Unweighted pair group method with arithmetic averages cluster analysis resulted in one loose group of the wild type with three subgroups. The present study paves the way for the identification and maintenance of genetically uniform B. monnieri plants micropropagated in the lab, plants regrown from synthetic seeds and hardened in the field.  相似文献   

15.
The increasing utilization of synthetic (encapsulated) seeds for germplasm conservation and propagation necessitates the assessment of genetic stability of conserved propagules following their plantlet conversion. We have assessed the genetic stability of synthetic seeds of Cannabis sativa L. during in vitro multiplication and storage for 6 months at different growth conditions using inter simple sequence repeat (ISSR) DNA fingerprinting. Molecular analysis of randomly selected plants from each batch was conducted using 14 ISSR markers. Of the 14 primers tested, nine produced 40 distinct and reproducible bands. All the ISSR profiles from in vitro stored plants were monomorphic and comparable to the mother plant which confirms the genetic stability among the clones. GC analysis of six major cannabinoids [Δ9-tetrahydrocannabinol, tetrahydrocannabivarin, cannabidiol, cannabichromene, cannabigerol and cannabinol] showed homogeneity in the re-grown clones and the mother plant with insignificant differences in cannabinoids content, thereby confirming the stability of plants derived from synthetic seeds following 6 months storage.  相似文献   

16.
Rapid micropropagation was achieved in Chlorophytum borivilianum Santapau and Fernandes using shoot base as explants. Multiple shoots were induced on Murashige and Skoog’s (MS) medium supplemented with 3.0 mg dm−3 6-benzylaminopurine, 0.1 mg dm−3 1-naphthaleneacetic acid, 150 mg dm−3 adenine sulphates and 3 % saccharose. Rooting was readily achieved upon transferring the shoots onto half strength MS medium supplemented with 0.1 mg dm−3 indolebutyric acid and 2 % saccharose. Micropropagated plantlets were hardened in the greenhouse and successfully established in soil. Random amplified polymorphic DNA (RAPD) markers were used to evaluate the genetic stability of the micropropagated plants. Thirty one arbitrary decamers were used to amplify genomic DNA from in vitro and in vivo plant material to assess the genetic stability. All RAPD profile analysis from micropropagated plants was genetically similar to mother plants.  相似文献   

17.
Randomly amplified polymorphic DNA (RAPD) markers were used to assess genetic stability of 80 micropropagated Hagenia abyssinica plants, 40 of axillary origin and 40 of adventitious origin. The shoots were isolated from the same mother tree and micropropagated for over two years. Among the 83 RAPD primers screened, 16 gave reproducible band patterns. These 16 primers produced 115 bands for each plant. One plant from axillary origin showed two unique bands with primer OPC-11. All other plants showed identical band patterns. Generally, there was no significant difference in the shoot multiplication rate between shoots of axillary and adventitious origin. Indole-3-acetic acid (IAA) resulted in better ex vitro rooting compared to indole-3-butyric acid (IBA) and α-naphthaleneacetic acid (NAA). Non-micropropagated plants that were grown in the greenhouse for about one year were better in ex vitro rooting compared to those of juvenile material and mature tree derived micropropagated plants of the same treatment. Adventitious rooting related oxygenase gene (ARRO-1) isolated from apple (Malus domestica) was not expressed in H. abyssinica using a complementary DNA representational difference analysis fragment (cDNA RDA14) as a probe.  相似文献   

18.
Random amplified polymorphic DNA (RAPD) markers were used to determine the genetic stability of long-term (more than 10 years) micropropagated shoots of Japanese black pine (Pinus thunbergii Parl.). Thirty-six shoots consisting of three morphotypes (short, medium, and long needles) were randomly chosen from about 4,000 micropropagated shoots regenerated from the explants of a single nematode-resistant mother plant. Out of 126 primers screened, 30 gave 134 clear reproducible bands. A total of 4,824 bands obtained from these studies exhibited no aberration in RAPD banding patterns among the tested shoots. Our results show that regenerants from our plant micropropagation system are genetically stable. Received: 5 December 1997 / Revision received: 17 May 1998 / Accepted: 1 June 1998  相似文献   

19.
Randomly amplified polymorphic DNA (RAPD) was used as a tool to assess the genetic fidelity of in vitro propagated Araucaria excelsa R. Br. var. glauca with explants taken from orthotropic stem along with their related mother plants after treatment with kinetin, 2iP, BA (0.02–0.26 mg/l) and TDZ (0.001–1 mg/l) to produce axillary shoots. TDZ and kinetin induced more shoot and higher length per explant. Results showed a total of 1,676 fragments were generated with 12 RAPD primers in micropropagated plants and their donor mother plants. The number of loci ranged from 6 in OPB 12–18 in OPY 07 with a size ranging from 250 bp in OPH 19–3500 bp in OPH 11. Cluster analysis of RAPD data using UPGMA (unweighted pair group method with arithmetic average) revealed more than 92% genetic similarities between tissue cultured plants and their corresponding mother plant measured by the Jaccard’s similarity coefficient. Similarity matrix and PCoA (two dimensional principal coordinate analysis) resulted in the same affinity. Primers had shown 36% polymorphism. However, careful monitoring of tissue culture derived plants might be needed to determine that rooted shoots are adventitious in origin.  相似文献   

20.
To evaluate genetic homogeneity of 1-year-old guava (Psidium guajava L.) plants developed from in vitro somatic embryogenesis, DNA from leaf tissues of seven randomly selected plants along with the mother plant, was isolated and subjected to molecular analysis. A total of six Simple Sequence Repeat (SSR) primer pairs, producing reproducible and clear bands ranging from 100 to 300?bp in size, resulted in amplification of single band (allele), corresponding homozygous individuals. Moreover, of 10 different inter-simple sequence repeat (ISSR) primers screened, six produced resolvable, reproducible and scorable bands. All these ISSRs produced a total of 25 bands, ranging between 300 and 1,200?bp length, and the number of scorable bands, for each primer varied from three to six with an average of 4.1 bands per primer. The amplification products were monomorphic across all the micropropagated plants produced by all SSR and ISSR primers applied. The monomorphic banding pattern in micropropagated plants and the mother plant confirms the genetic homogeneity of the in vitro raised plants and demonstrates the reliability of our in vitro propagation system for guava.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号