首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   

8.
9.
10.
11.
The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high K(s) value (20 to 40 mM) for MTBE.  相似文献   

12.
We have developed Escherichia coli and Pseudomonas expression vectors based on the alkane-responsive Pseudomonas putida (oleovorans) GPo1 promoter PalkB. The expression vectors were tested in several E. coli strains, P. putida GPo12 and P. fluorescens KOB2Delta1 with catechol-2,3-dioxygenase (XylE). Induction factors ranged between 100 and 2700 for pKKPalk in E. coli and pCom8 in Pseudomonas strains, but were clearly lower for pCom8, pCom9, and pCom10 in E. coli. XylE expression levels of more than 10% of total cell protein were obtained for E. coli as well as for Pseudomonas strains.  相似文献   

13.
14.
15.
16.
The availability of suitable, well-characterized, and robust expression systems remains an essential requirement for successful metabolic engineering and recombinant protein production. We investigated the suitability of the Pseudomonas putida GPo1-derived AlkS/P(alkB) expression system in strictly aqueous cultures. By applying the apolar inducer dicyclopropylketone (DCPK) to express green fluorescent protein (GFP) from this system in Escherichia coli and analyzing the resulting cultures on single-cell level by flow cytometry, we found that this expression system gives rise to a homogeneous population of cells, even though the overall system is expected to have a positive feed-back element in the expression of the regulatory gene alkS. Overexpressing E. coli's serine hydroxymethyltransferase gene glyA, we showed that the system was already fully turned on at inducer concentrations as low as 0.005% (v/v). This allows efficient mass production of recombinant enzymes even though DCPK concentrations decreased from 0.05% to 0.01% over the course of a fully aerated cultivation in aqueous medium. Therefore, we elaborated the optimum induction procedure for production of the biocatalytically promising serine hydroxymethyltransferase and found volumetric and specific productivity to increase with specific growth rate in glucose-limited fed-batch cultures. Acetate excretion as a result of recombinant protein production could be avoided in an optimized fermentation protocol by switching earlier to a linear feed. This protocol resulted in a production of a final cell dry weight (CDW) concentration of 52 g/L, producing recombinant GlyA with a maximum specific activity of 6.3 U/mg total protein.  相似文献   

17.
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIA(Ntr) participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号