首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first and regulatory step of heme biosynthesis in mammals begins with the pyridoxal 5'-phosphate-dependent condensation reaction catalyzed by 5-aminolevulinate synthase. The enzyme functions as a homodimer with the two active sites at the dimer interface. Previous studies demonstrated that circular permutation of 5-aminolevulinate synthase does not prevent folding of the polypeptide chain into a structure amenable to binding of the pyridoxal 5'-phosphate cofactor and assembly of the two subunits into a functional enzyme. However, while maintaining a wild type-like three-dimensional structure, active, circularly permuted 5-aminolevulinate synthase variants possess different topologies. To assess whether the aminolevulinate synthase overall structure can be reached through alternative or multiple folding pathways, we investigated the guanidine hydrochloride-induced unfolding, conformational stability, and structure of active, circularly permuted variants in relation to those of the wild type enzyme using fluorescence, circular dichroism, activity, and size exclusion chromatography. Aminolevulinate synthase and circularly permuted variants folded reversibly; the equilibrium unfolding/refolding profiles were biphasic and, in all but one case, protein concentration-independent, indicating a unimolecular process with the presence of at least one stable intermediate. The formation of this intermediate was preceded by the disruption of the dimeric interface or dissociation of the dimer without significant change in the secondary structural content of the subunits. In contrast to the similar stabilities associated with the dimeric interface, the energy for the unfolding of the intermediate as well as the overall conformational stabilities varied among aminolevulinate synthase and variants. The unfolding of one functional permuted variant was protein concentration-dependent and had a potentially different folding mechanism. We propose that the order of the ALAS secondary structure elements does not determine the ability of the polypeptide chain to fold but does affect its folding mechanism.  相似文献   

2.
One of the key questions in protein folding is whether polypeptide chains require unique nucleation sites to fold to the native state. In order to identify possible essential polypeptide segments for folding, we have performed a complete circular permutation analysis of a protein in which the natural termini are in close proximity. As a model system, we used the disulfide oxidoreductase DsbA from Escherichia coli, a monomeric protein of 189 amino acid residues. To introduce new termini at all possible positions in its polypeptide chain, we generated a library of randomly circularly permuted dsbA genes and screened for active circularly permuted variants in vivo. A total of 51 different active variants were identified. The new termini were distributed over about 70 % of the polypeptide chain, with the majority of them occurring within regular secondary structures. New termini were not found in approximately 30 % of the DsbA sequence which essentially correspond to four alpha-helices of DsbA. Introduction of new termini into these "forbidden segments" by directed mutagenesis yielded proteins with altered overall folds and strongly reduced catalytic activities. In contrast, all active variants analysed so far show structural and catalytic properties comparable with those of DsbA wild-type. We suggest that random circular permutation allows identification of contiguous structural elements in a protein that are essential for folding and stability.  相似文献   

3.
A collection of circularly permuted catalytic chains of aspartate transcarbamoylase (ATCase) has been generated by random circular permutation of the pyrB gene. From the library of ATCases containing permuted polypeptide chains, we have chosen for further investigation nine ATCase variants whose catalytic chains have termini located within or close to an alpha helix. All of the variants fold and assemble into dodecameric holoenzymes with similar sedimentation coefficients and slightly reduced thermal stabilities. Those variants disrupted within three different helical regions in the wild-type structure show no detectable enzyme activity and no apparent binding of the bisubstrate analog N:-phosphonacetyl-L-aspartate. In contrast, two variants whose termini are just within or adjacent to other alpha helices are catalytically active and allosteric. As expected, helical disruptions are more destabilizing than loop disruptions. Nonetheless, some catalytic chains lacking continuity within helical regions can assemble into stable holoenzymes comprising six catalytic and six regulatory chains. For seven of the variants, continuity within the helices in the catalytic chains is important for enzyme activity but not necessary for proper folding, assembly, and stability of the holoenzyme.  相似文献   

4.
Because the N- and C-terminal amino acids of the catalytic (c) polypeptide chains of Escherichia coli aspartate transcarbamoylase (ATCase) are in close proximity to each other, it has been possible to form in vivo five different active ATCase variants in which the terminal regions of the wild-type c chains are linked in a continuous polypeptide chain and new termini are introduced elsewhere in either of the two structural domains of the c chain. These circularly permuted (cp) chains were produced by constructing tandem pyrB genes, which encode the c chain of ATCase, followed by application of PCR. Chains expressed in this way assemble efficiently in vivo to form active, stable ATCase variants. Three such variants have been purified and shown to have the kinetic and physical properties characteristic of wild-type ATCase composed of two catalytic (C) trimers and three regulatory (R) dimers. The values of Vmax for cpATCase122, cpATCase222, and cpATCase281 ranged from 16-21 mumol carbamoylaspartate per microgram per h, compared with 15 for wild-type ATCase, and the values for K0.5 for the variants were 4-17 mM aspartate, whereas wild-type ATCase exhibited a value of 6 mM. Hill coefficients for the three variants varied from 1.8 to 2.1, compared with 1.4 for the wild-type enzyme. As observed with wild-type ATCase, ATP activated the variants containing the circularly permuted chains, as shown by the lowering of K0.5 for aspartate and a decrease in the Hill coefficient (nH). In contrast, CTP caused both an increase in K0.5 and nH for the variants, just as observed with wild-type ATCase. Thus, the enzyme containing the permuted chains with widely diverse N- and C-termini exhibited the homotropic and heterotropic effects characteristic of wild-type ATCase. The decrease in the sedimentation coefficient of the variants caused by the binding of the bisubstrate ligand N-(phosphonacetyl)-L-aspartate (PALA) was also virtually identical to that obtained with wild-type ATCase, thereby indicating that these altered ATCase molecules undergo the analogous ligand-promoted allosteric transition from the taut (T) state to the relaxed (R) conformation. These ATCase molecules with new N- and C-termini widely dispersed throughout the c chains are valuable models for studying in vivo and in vitro folding of polypeptide chains.  相似文献   

5.
Previous studies on Escherichia coli aspartate transcarbamoylase (ATCase) demonstrated that active, stable enzyme was formed in vivo from complementing polypeptides of the catalytic (c) chain encoded by gene fragments derived from the pyrBI operon. However, the enzyme lacked the allosteric properties characteristic of wild-type ATCase. In order to determine whether the loss of homotropic and heterotropic properties was attributable to the location of the interruption in the polypeptide chain rather than to the lack of continuity, we constructed a series of fragmented genes so that the breaks in the polypeptide chains would be dispersed in different domains and diverse regions of the structure. Also, analogous molecules containing circularly permuted c chains with altered termini were constructed for comparison with the ATCase molecules containing fragmented c chains. Studies were performed on four sets of ATCase molecules containing cleaved c chains at positions between residues 98 and 99, 121 and 122, 180 and 181, and 221 and 222; the corresponding circularly permuted chains had N termini at positions 99, 122, 181, and 222. All of the ATCase molecules containing fragmented or circularly permuted c chains exhibited the homotropic and heterotropic properties characteristic of the wild-type enzyme. Hill coefficients (n(H:)) and changes in them upon the addition of ATP and CTP were similar to those observed with wild-type ATCase. In addition, the conformational changes revealed by the decrease in sedimentation coefficient upon the addition of a bisubstrate analog were virtually identical to that for the wild-type enzyme. Differential scanning calorimetry showed that neither the breakage of the polypeptide chains nor the newly formed covalent bond between the termini in the wild-type enzyme had a significant impact on the thermal stability of the assembled dodecamers. The studies demonstrate that continuity of the polypeptide chain within structural domains is not essential for the assembly, activity, and allosteric properties of ATCase.  相似文献   

6.
Folding of the green fluorescent protein (GFP) from Aequorea victoria is characterized by autocatalytic formation of its p-hydroxybenzylideneimidazolidone chromophore, which is located in the center of an 11-stranded beta-barrel. We have analyzed the in vivo folding of 20 circularly permuted variants of GFP and find a relatively low tolerance towards disruption of the polypeptide chain by introduction of new termini. All permuted variants with termini in strands of the beta-barrel and about half of the variants with termini in loops lost the ability to form the chromophore. The thermal stability of the permuted GFPs with intact chromophore is very similar to that of the wild-type, indicating that chromophore-side chain interactions strongly contribute to the extraordinary stability of GFP.  相似文献   

7.
We investigated the relationship between RNA structure and folding rates accounting for hierarchical structural formation. Folding rates of two-state folding proteins correlate well with relative contact order, a quantitative measure of the number and sequence distance between tertiary contacts. These proteins do not form stable structures prior to the rate-limiting step. In contrast, most secondary structures are stably formed prior to the rate-limiting step in RNA folding. Accordingly, we introduce "reduced contact order", a metric that reflects only the number of residues available to participate in the conformational search after the formation of secondary structure. Plotting the folding rates and the reduced contact order from ten different RNAs suggests that RNA folding can be divided into two classes. To examine this division, folding rates of circularly permutated isomers are compared for two RNAs, one from each class. Folding rates vary by tenfold for circularly permuted Bacillus subtilis RNase P RNA isomers, whereas folding rates vary by only 1.2-fold for circularly permuted catalytic domains. This difference is likely related to the dissimilar natures of their rate-limiting steps.  相似文献   

8.
Residue interaction networks and loop motions are important for catalysis in dihydrofolate reductase (DHFR). Here, we investigate the effects of ligand binding and chain connectivity on network communication in DHFR. We carry out systematic network analysis and molecular dynamics simulations of the native DHFR and 19 of its circularly permuted variants by breaking the chain connections in ten folding element regions and in nine nonfolding element regions as observed by experiment. Our studies suggest that chain cleavage in folding element areas may deactivate DHFR due to large perturbations in the network properties near the active site. The protein active site is near or coincides with residues through which the shortest paths in the residue interaction network tend to go. Further, our network analysis reveals that ligand binding has “network-bridging effects” on the DHFR structure. Our results suggest that ligand binding leads to a modification, with most of the interaction networks now passing through the cofactor, shortening the average shortest path. Ligand binding at the active site has profound effects on the network centrality, especially the closeness.  相似文献   

9.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthesis in nonplant eukaryotes and some prokaryotes. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. Tyr-121 is a conserved residue in all known sequences of 5-aminolevulinate synthases. Further, it corresponds to Tyr-70 of Escherichia coli aspartate aminotransferase, which has been shown to interact with the cofactor and prevent the dissociation of the cofactor from the enzyme. To test whether Tyr-121 is involved in cofactor binding in murine erythroid 5-aminolevulinate synthase, Tyr-121 of murine erythroid 5-aminolevulinate synthase was substituted by Phe and His using site-directed mutagenesis. The Y121F mutant retained 36% of the wild-type activity and the Km value for substrate glycine increased 34-fold, while the activity of the Y121H mutant decreased to 5% of the wild-type activity and the Km value for glycine increased fivefold. The pKa1 values in the pH-activity profiles of the wild-type and mutant enzymes were 6.41, 6.54, and 6.65 for wild-type, Y121F, and Y121H, respectively. The UV-visible and CD spectra of Y121F and Y121H mutants were similar to those of the wild-type with the exception of an absorption maximum shift (420 --> 395 nm) for the Y121F mutant in the visible spectrum region, suggesting that the cofactor binds the Y121F mutant enzyme in a more unrestrained manner. Y121F and Y121H mutant enzymes also exhibited lower affinity than the wild-type for the cofactor, reflected in the Kd values for pyridoxal 5'-phosphate (26.5, 6.75, and 1.78 microM for Y121F, Y121H, and the wild-type, respectively). Further, Y121F and Y121H proved less thermostable than the wild type. Taken together, these findings indicate that Tyr-121 plays a critical role in cofactor binding of murine erythroid 5-aminolevulinate synthase.  相似文献   

10.
Two distinct circularly permuted forms of chicken avidin were designed with the aim of constructing a fusion avidin containing two biotin-binding sites in one polypeptide. The old N and C termini of wild-type avidin were connected to each other via a glycine/serine-rich linker, and the new termini were introduced into two different loops. This enabled the creation of the desired fusion construct using a short linker peptide between the two different circularly permuted subunits. The circularly permuted avidins (circularly permuted avidin 5 --> 4 and circularly permuted avidin 6 --> 5) and their fusion, pseudotetrameric dual chain avidin, were biologically active, i.e. showed biotin binding, and also displayed structural characteristics similar to those of wild-type avidin. Dual chain avidin facilitates the development of dual affinity avidins by allowing adjustment of the ligand-binding properties in half of the binding sites independent of the other half. In addition, the subunit fusion strategy described in this study can be used, where applicable, to modify oligomeric proteins in general.  相似文献   

11.
5-Aminolevulinate synthase and the first step of heme biosynthesis   总被引:1,自引:0,他引:1  
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to yield 5-aminolevulinate. In animals, fungi, and some bacteria, 5-aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway. Mutations on the human erythroid 5-aminolevulinate synthase, which is localized on the X-chromosome, have been associated with X-linked sideroblastic anemia. Recent biochemical and molecular biological developments provide important insights into the structure and function of this enzyme. In animals, two aminolevulinate synthase genes, one housekeeping and one erythroid-specific, have been identified. In addition, the isolation of 5-aminolevulinate synthase genomic and cDNA clones have permitted the development of expression systems, which have tremendously increased the yields of purified enzyme, facilitating structural and functional studies. A lysine residue has been identified as the residue involved in the Schiff base linkage of the pyridoxal 5-phosphate cofactor, and the catalytic domain has been assigned to the C-terminus of the enzyme. A conserved glycine-rich motif, common to all aminolevulinate synthases, has been proposed to be at the pyridoxal 5phosphate-binding site. A heme-regulatory motif, present in the presequences of 5-aminolevulinate synthase precursors, has been shown to mediate the inhibition of the mitochondrial import of the precursor proteins in the presence of heme. Finally, the regulatory mechanisms, exerted by an iron-responsive element binding protein, during the translation of erythroid 5-aminolevulinate synthase mRNA, are discussed in relation to heme biosynthesis.  相似文献   

12.
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.Abbreviations cpRNA circularly permuted RNA  相似文献   

13.
In T4 lysozyme, helix A is located at the amino terminus of the sequence but is associated with the C-terminal domain in the folded structure. To investigate the implications of this arrangement for the folding of the protein, we first created a circularly permuted variant with a new amino terminus at residue 12. In effect, this moves the sequence corresponding to helix A from the N- to the C-terminus of the molecule. The protein crystallized nonisomorphously with the wild type but has a very similar structure, showing that the unit consisting of helix A and the C-terminal domain can be reconstituted from a contiguous polypeptide chain. The protein is less stable than the wild type but folds slightly faster. We then produced a second variant in which the helix A sequence was appended at the C-terminus (as in the first variant), but was also restored at the N-terminus (as in the wild type). This variant has two helix A sequences, one at the N-terminus and the other at the C-terminus, each of which can compete for the same site in the folded protein. The crystal structure shows that it is the N-terminal sequence that folds in a manner similar to that of the wild type, whereas the copy at the C-terminus is forced to loop out. The stability of this protein is much closer to that of the wild type, but its rate of folding is significantly slower. The reduction in rate is attributed to the presence of the two identical sequence segments which compete for a single, mutually exclusive, site.  相似文献   

14.
A number of studies have examined the structural properties of late folding intermediates of (beta/alpha)8-barrel proteins involved in tryptophan biosynthesis, whereas there is little information available about the early folding events of these proteins. To identify the contiguous polypeptide segments important to the folding of the (beta/alpha)8-barrel protein Escherichia coli N-(5'-phosphoribosyl)anthranilate isomerase, we structurally characterized fragments and circularly permuted forms of the protein. We also simulated thermal unfolding of the protein using molecular dynamics. Our fragmentation experiments demonstrate that the isolated (beta/alpha)(1-4)beta5 fragment is almost as stable as the full-length protein. The far and near-UV CD spectra of this fragment are indicative of native-like secondary and tertiary structures. Structural analysis of the circularly permutated proteins shows that if the protein is cleaved within the two N-terminal betaalpha modules, the amount of secondary structure is unaffected, whereas, when cleaved within the central (beta/alpha)(3-4)beta5 segment, the protein simply cannot fold. An ensemble of the denatured structures produced by thermal unfolding simulations contains a persistent local structure comprised of beta3, beta4 and beta5. The presence of this three-stranded beta-barrel suggests that it may be an important early-stage folding intermediate. Interactions found in (beta/alpha)(3-4)beta5 may be essential for the early events of ePRAI folding if they provide a nucleation site that directs folding.  相似文献   

15.
Generating diverse protein libraries that contain improved variants at a sufficiently high frequency is critical for improving the properties of proteins using directed evolution. Many studies have illustrated how random mutagenesis, cassette mutagenesis, DNA shuffling and similar approaches are effective diversity generating methods for directed evolution. Very few studies have explored random circular permutation, the intramolecular relocation of the N- and C-termini of a protein, as a diversity-generating step for directed evolution. We subjected a library of random circular permutations of TEM-1 β-lactamase to selections on increasing concentrations of a variety of β-lactam antibiotics including cefotaxime. We identified two circularly permuted variants that conferred elevated resistance to cefotaxime but decreased resistance to other antibiotics. These variants were circularly permuted in the Ω-loop proximal to the active site. Remarkably, one variant was circularly permuted such that the key catalytic residue Glu166 was located at the N-terminus of the mature protein.  相似文献   

16.
The amino acid sequence of mouse dihydrofolate reductase was permuted circularly at the level of the gene. By transposing the 3'-terminal half of the coding sequence to its 5' terminus, the naturally adjacent amino and carboxyl termini of the native protein were fused, and one of the flexible peptide loops at the protein surface was cleaved. The steady-state kinetic constants, the dissociation constants of folate analogues, and the degree of activation by both mercurials and salt as well as the resistance toward digestion by trypsin were almost indistinguishable from those of a recombinant wild-type protein. Judged by these criteria, the circularly permuted variant has the same active site and overall structure as the wild-type enzyme. The only significant difference was the lower stability toward guanidinium chloride and the lower solubility of the circularly permuted variant. This behavior may be due to moving a mononucleotide binding fold from the interior of the sequence to the carboxyl terminus. Thus, dihydrofolate reductase requires neither the natural termini nor the cleaved loop for stability, for the conformational changes that accompany catalysis as well as the binding of inhibitors, and for the folding process.  相似文献   

17.
To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.  相似文献   

18.
It is obvious that functional activity of a protein molecule is closely related to its structure. On the other hand, the understanding of structure-function relationship still remains one of the intriguing problems of molecular biology. There is widespread belief that mutagenesis presents a real way to solve this problem. Following this assumption, we have investigated the effect of circular permutation in dihydrofolate reductase from E. coli on protein structure and functioning. It has been shown that in the absence of ligands two circularly permuted variants of dihydrofolate reductase possess all the properties of the molten globule state. However, after addition of ligands they gain the native-like structural properties and specific activity. This means that the in vitro folding of permuted dihydrofolate reductase is terminated at the stage of the molten globule formation. Interaction of permuted protein with ligands leads to the structural adjustment and formation of active protein molecules.  相似文献   

19.
5-Aminolevulinate synthase (ALAS) is the first enzyme of the heme biosynthetic pathway in non-plant eukaryotes and the alpha-subclass of purple bacteria. The pyridoxal 5'-phosphate cofactor at the active site undergoes changes in absorptive properties during substrate binding and catalysis that have allowed us to study the kinetics of these reactions spectroscopically. Rapid scanning stopped-flow experiments of murine erythroid 5-aminolevulinate synthase demonstrate that reaction with glycine plus succinyl-CoA results in a pre-steady-state burst of quinonoid intermediate formation. Thus, a step following binding of substrates and initial quinonoid intermediate formation is rate-determining. The steady-state spectrum of the enzyme is similar to that formed in the presence of 5-aminolevulinate, suggesting that release of this product limits the overall rate. Reaction of either glycine or 5-aminolevulinate with ALAS is slow (kf = 0.15 s-1) and approximates kcat. The rate constant for reaction with glycine is increased at least 90-fold in the presence of succinyl-CoA and most likely represents a slow conformational change of the enzyme that is accelerated by succinyl-CoA. The slow rate of reaction of 5-aminolevulinate with ALAS is 5-aminolevulinate-independent, suggesting that it also represents a slow isomerization of the enzyme. Reaction of succinyl-CoA with the enzyme-glycine complex to form a quinonoid intermediate is a biphasic process and may be irreversible. Taken together, the data suggest that turnover is limited by release of 5-aminolevulinate or a conformational change associated with 5-aminolevulinate release.  相似文献   

20.
5-Aminolevulinate synthase, a pyridoxal 5'-phosphate-dependent enzyme of the alpha-oxoamine synthase family, catalyzes the first step of the heme biosynthetic pathway in mammalian cells. This reaction entails the condensation of glycine with succinyl-coenzyme A to yield 5-aminolevulinate, carbon dioxide and CoA. Mutations in the erythroid aminolevulinate synthase gene lead to a defective enzyme and are associated with the erythropoietic disorder X-linked sideroblastic anemia. In the past few years, rapid scanning-stopped-flow spectroscopy and chemical quenched-flow studies of the ALAS reaction, under single- and multi-turnover conditions, have provided important results for the interpretation of the catalytic mechanism. In particular, the role of the protein scaffold in modulating the chemical reactivity of the pyridoxal 5'-phosphate cofactor and, thus, the catalytic pathway of ALAS has been investigated in our laboratory using transient kinetics and global analysis of the kinetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号