首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Hypothalamic GRH gene expression has been shown to be negatively regulated by GH in both rat and mouse. The recent reports of different 5' untranslated sequences in mouse GRH cDNA from hypothalamus and placenta have raised the possibility of tissue-specific regulation of the GRH gene. To provide support for this possibility, we have studied rodent models with GH deficiency due to genetic defects in the pituitary. Complementary DNA probes for the hypothalamic and placental 5' regions were used to determine the tissue specificity of each mRNA. Although the hypothalamic form of GRH mRNA was detected in placenta, it constituted less than 0.7% of total placental GRH mRNA. A placental 5' probe (based on the previously reported sequence) hybridized only with a larger mRNA species and was not tissue specific, indicating that it was not related to GRH and was derived possibly from a cloning artifact. The correct 5' sequence of mouse placental GRH cDNA was determined and shown to be distinct from both that previously reported and the hypothalamic sequence. Although the placental form of GRH mRNA was detected in hypothalamus using the polymerase chain reaction, its levels were undetectable by Northern blotting. The 5' end of rat placental GRH cDNA was similarly sequenced and shown to exhibit no homology with the rat 5' hypothalamic sequence, but a high degree of homology with the corresponding mouse placental sequence. In GH-deficient dwarf (dw/dw) rats, hypothalamic GRH mRNA levels were significantly increased above control levels in both females and males, and pregnancy did not alter the levels in either (dw) or control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the effect of thyroid status on thyrotropin-releasing hormone receptor (TRH-R) mRNA levels both in vivo and in vitro (GH3 cells) using a cloned rat TRH-R cDNA by RT-PCR. Experimental hypothyroid rats were produced by total thyroidectomy and were then killed 7 days after the operation. TRH receptor binding in the anterior pituitary and serum TSH level were elevated approximately 2-fold and 8-fold, respectively, in 7 day thyroidectomized rats. TRH-R mRNA levels in hypothyroid rats were also increased significantly compared with those of normal rats. In GH3 cells, however, no significant change of TRH-R mRNA level was observed between cultures treated with triiodothyronine (T3, 10(-9) and 10(-7) M) and the untreated group. The present data indicate that 1) the in vivo effects of thyroid status on TRH-R mRNA levels differ from the in vitro one, and that 2) the down regulation of TRH-R binding by thyroid hormone in GH3 cells may be mediated by translational or post-translational mechanisms.  相似文献   

4.
The effect of thyroid hormone deficiency and growth hormone (GH) treatment on hypothalamic GH-releasing hormone (GHRH)/somatostatin (SS) concentrations, GHRH/SS mRNA levels, and plasma GH and somatomedin-C (IGF-I) concentrations were studied in 28- and 35-day-old rats made hypothyroid by giving dams propylthiouracil in the drinking water since the day of parturition. Hypothyroid rats, at both 28 and 35 days of life, had decreased hypothalamic GHRH content and increased GHRH mRNA levels, unaltered SS content and SS mRNA levels, and reduced plasma GH and IGF-I concentrations. Treatment of hypothyroid rats with GH for 14 days completely restored hypothalamic GHRH content and reversed the increase in GHRH mRNA, but did not alter plasma IGF-I concentrations. These data indicate that, in hypothyroid rats, the changes in hypothalamic GHRH content and gene expression are due to the GH deficiency ensuing from the hypothyroid state. Failure of the GH treatment to increase plasma IGF-I indicates that the feedback regulation on GHRH neurons is operated by circulating GH and/or perhaps tissue but not plasma IGF-I concentrations. Presence of low plasma IGF-I concentrations would be directly related to thyroid hormone deficiency.  相似文献   

5.
6.
The effects of thyroid hormones on prolactin (PRL) and growth hormone (GH) synthesis by the rat anterior pituitary gland were assessed in vitro. A marked reduction (84-87%) in the rate of H3-leucine incorporation into GH was evident 2-4 weeks after thyroidectomy, while incorporation into PRL was 52-71% less than that measured in glands from intact rats. A single injection of T4 (200 mug/kg) administered to thyroidectomized (THX) rats 48 hr before sacrifice significantly increased incorporation into both pituitary hormones, although the stimulation of GH synthesis was much more dramatic. Perphenazine, alpha-methyltyrosine and estrogen enhanced the rate of PRL synthesis in intact rats. Thyroid ablation did not affect the response to perphenazine, but significantly increased the response to alpha-methyltyrosine and estrogen. On the other hand, administration of T4 to THX rats receiving perphenazine, alpha-methyltyrosine or estrogen diminished the stimulatory influence of these treatments on PRL synthesis. Perphenazine, alpha-methyltyrosine and estrogen had no effect on the rate of GH synthesis in THX rats, nor did they alter the ability of T4 to restore GH synthesis in these animals. These results indicate that GH synthesis in the rat is dependent upon thyroid hormones and support the concept that these hormones exert their stimulatory effect directly on pituitary somatotrophs. Pituitary lactotrophs, however, appear to retain much of their capacity to synthesize PRL under conditions of thyroid deficiency. The changes in pituitary PRL levels and synthesis rate induced by thyroid ablation might reflect differences in the number rather than the activity of these cells.  相似文献   

7.
Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the anterior pituitary gland by radioimmunoassay. Transgene expression in these sites was confirmed by RT-PCR. Tgr rats had reduced hypothalamic GRF and mRNA, in contrast to the increased GRF expression which accompanies GH deficiency in other dwarf rats. Endogenous GH mRNA, GH content, pituitary size and somatotroph cell number were also reduced significantly in Tgr rats. Pituitary adrenocorticotrophic hormone (ACTH) and thyroid-stimulating hormone (TSH) levels were normal, but prolactin content, mRNA levels and lactotroph cell numbers were also slightly reduced, probably due to feedback inhibition of prolactin by the lactogenic properties of the hGH transgene. This is the first dominant dwarf rat strain to be reported and will provide a valuable model for evaluating the effects of transgene expression on endogenous GH secretion, as well as the use of GH secretagogues for the treatment of dwarfism.  相似文献   

8.
9.
To investigate the efficacy of endocrine evaluation in diagnosing and localizing the cause of anterior pituitary failure, 17 patients with suprasellar space-occupying lesions, 4 patients with intrasellar tumors, 8 patients with no detectable anatomical lesion, 1 patient with posttraumatic failure and 1 patient with septooptical dysplasia were investigated. Endocrine evaluation consisted of measuring adrenocorticotropic hormone (ACTH), cortisol, and growth hormone (GH) levels during insulin hypoglycemia test (IHT) and after administration of corticotropin-releasing hormone (CRH) and growth hormone-releasing hormone (GRH). In addition, basal prolactin levels, gonadal and thyroid function were evaluated. The results showed that 4 of 17 patients with suprasellar tumors had normal ACTH and GH responses during IHT and after releasing hormone (RH) administration. Five of these patients had a normal ACTH or cortisol rise but no GH response during IHT. All 5 had a normal ACTH and 3 had normal GH rise after RH. Seven patients with suprasellar tumors had no ACTH or GH response during IHT, but all had an ACTH response to CRH. Only 3 of this group had a GH response to GRH. There was one exception of a patient who showed a GH and ACTH rise during IHT but only a blunted ACTH and no GH rise after RH administration. Four patients with pituitary failure and no demonstrable lesion had an ACTH rise after CRH but no GH rise after GRH, whereas in 3 patients with isolated ACTH deficiency no ACTH rise after CRH was seen. In 4 patients with nonsecreting pituitary tumors normal ACTH responses to IHT and CRH were seen, whereas GH rose during IHT only in 1 patient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Growth hormone-releasing hormone (GHRH) is a main inducer of growth hormone (GH) pulses in most species studied to date. There is no information regarding the pattern of GHRH secretion as a regulator of GH gene expression. We investigated the roles of the parameters of exogenous GHRH administration (frequency, amplitude, and total amount) upon induction of pituitary GH mRNA, GH content, and somatic growth in the female rat. Continuous GHRH infusions were ineffective in altering GH mRNA levels, GH stores, or weight gain. Changing GHRH pulse amplitude between 4, 8, and 16 microg/kg at a constant frequency (Q3.0 h) was only moderately effective in augmenting GH mRNA levels, whereas the 8 microg/kg and 16 microg/kg dosages stimulated weight gain by as much as 60%. When given at a 1.5-h frequency, GHRH doubled the amount of GH mRNA, elevated pituitary GH stores, and stimulated body weight gain. In the rat model, pulsatile but not continuous GHRH administration is effective in inducing pituitary GH mRNA and GH content as well as somatic growth. These studies suggest that the greater growth rate, pituitary mRNA levels, and GH stores seen in male compared with female rats are likely mediated, in part, by the endogenous episodic GHRH secretory pattern present in males.  相似文献   

11.
We compared the levels of growth hormone (GH) mRNA in the pituitary, plasma GH concentration, and altered phenotype in rats heterozygous and homozygous for an antisense RNA transgene targeted to the rat GH gene, with those in nontransgenic rats. We initially investigated whether the transgene promoter, which is connected to four copies of a thyroid hormone response element (TRE) that increases promoter activity, affected in vivo transgene expression in the pituitary of the transgenic rats. Plasma GH concentration correlated negatively with T, injection in surgically thyroidectomized heterozygous transgenic rats. There was a reduction of about ?35–40% in GH mRNA levels in the pituitary of homozygous animals compared with those in non-transgenic rats. Plasma GH concentration was significantly ?25–32 and ?29–41% lower in heterozygous and homozygous transgenic rats, respectively, compared with that in nontransgenic animals. Furthermore, the growth rates in homozygous transgenic rats were reduced by ?72–81 and ?51–70% compared with those of their heterozygous and nontransgenic littermates, respectively. The results of these studies suggested that the biological effect of GH in vivo is modulated dose-dependently by the antisense RNA transgene. The rat GH gene can therefore be targeted by antisense RNA produced from a transgene, as reflected in the protein and RNA levels. © 1995 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
The role of androgen in the sexual dimorphism in hypothalamic growth hormone (GH)-releasing hormone (GHRH) and somatostatin (SS) gene expression was examined in rats. In the first study, the SS and GHRH mRNA levels were measured in both male and female rats at 4, 6, 8, and 10 weeks of age. A significant sex-related difference in the SS and GHRH mRNA levels was observed after 8 weeks of age, when sexual maturation is fully attained. Male rats had higher SS and GHRH mRNA levels than the female rats. In the second study, adult ovariectomized rats received daily injection of dihydrotestosterone (DHT), nonaromatizable testosterone, at a dose of 2 mg/rat for 21 days. The DHT treatment masculinized the GH secretory pattern, which was indistinguishable from that of intact male rats, and simultaneously augmented the SS and GHRH mRNA levels. The DHT treatment of ovariectomized rats after hypophysectomy significantly raised the level of SS mRNA, but not that of GHRH mRNA compared to the control animals. These findings suggest that the activation of the SS gene expression through androgen receptor plays an important role in the maintenance of sexual dimorphism in GH secretion in rats.  相似文献   

15.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

16.
17.
Expression of the endogenous human GH (hGH) gene in response to glucocorticoids, thyroid hormone, and insulin was studied in cultures of dispersed GH-secreting human pituitary adenomas. Results were compared to those obtained when the hGH gene was transfected into rat pituitary tumor cells (GC). In the human pituitary cells the glucocorticoid dexamethasone [(Dex) 10(-6) M] increased the release of GH and the levels of GH mRNA by 2 to 4-fold (P less than 0.05). T3 (10(-8) M) had no effect on GH mRNA but increased hGH release by 2- to 6-fold (P less than 0.01). Insulin (5 x 10(-9) M) alone had no significant effect on either hGH mRNA or protein, but blunted the effect of Dex. Among 11 of 18 GC cell clones transfected with the hGH gene with detectable hGH mRNA expression, Dex increased hGH mRNA levels in seven and T3 treatment reduced hGH mRNA levels in eight. Conversely, rat GH mRNA levels from the endogenous rat gene were increased by either Dex or T3 in all 18 clones. Insulin alone or in combination with T3 or Dex was found to increase hGH mRNA levels in some cell lines and to decrease hGH mRNA levels in others; these effects were correlated strongly (r = 0.88; P less than 0.001) with the influence of insulin on the endogenous rat GH gene, implying that individual cellular differences can simultaneously affect the insulin responsiveness of both genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
INTRODUCTION: Interferon alpha (IFN-alpha) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-alpha administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-alpha on GH mRNA expression in the rat anterior pituitary. OBJECTIVE: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-alpha. MATERIAL AND METHODS: Rats were administered an intraperitoneal injection of IFN-alpha or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31-base(35)S-labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. RESULTS: Acute administration of interferon alpha increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. CONCLUSION: A single IFN-alpha administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号