首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Endogenous arachidonic acid was converted to lipoxins A4, B4 and (6S)-lipoxin A4, in ionophore-A23187-stimulated mixtures of human platelets and granulocytes, while no lipoxins were formed when these cells were incubated separately. However, pure platelet suspensions transformed exogenous leukotriene A4 to lipoxins, including lipoxin A4 and (6S)-lipoxin A4, but not lipoxin B4. This compound was produced exclusively in the presence of granulocytes. A common unstable tetraene intermediate in lipoxin formation, 15-hydroxy-leukotriene A4 [5(6)-epoxy-15-hydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid], was indicated by trapping experiments with methanol. Thus, identical profiles of less polar tetraene-containing derivatives were formed from leukotriene A4 in platelet suspensions, from exogenous 15-hydroxyeicosatetraenoic acid in granulocyte suspensions and from endogenous substrate in mixed platelet/granulocyte suspensions. Evidence for the involvement of 12-lipoxygenase in platelet-dependent lipoxin formation was obtained. Thus, lipoxin synthesis from leukotriene A4 and 12-hydroxyeicosatetraenoic acid production from arachidonic acid by human platelets was equally inhibited by 15-hydroxyeicosatetraenoic acid with 50% inhibition obtained at 7.0 microM and 8.2 microM, respectively. In experiments with subcellular preparations from platelets, lipoxin synthesis was observed in both the particulate and soluble fraction and was paralleled by the 12-lipoxygenase activity. Furthermore, lipoxin formation from leukotriene A4 in platelet sonicates was dose-dependently inhibited by exogenous arachidonic acid. Finally, 12-lipoxygenase-deficient platelets from a patient with chronic myelogenous leukemia were totally unable to produce lipoxins from exogenous or granulocyte-derived leukotriene A4. It is concluded that the transcellular lipoxin synthesis is dependent on the platelet 12-lipoxygenase and proceeds via the unstable intermediate, 15-hydroxy-leukotriene A4. This tetraene epoxide is transformed to lipoxin B4 by a granulocyte epoxide hydrolase activity or to lipoxin A4 and lipoxins A4/B4 isomers by enzymatic or nonenzymatic hydrolysis.  相似文献   

2.
Formation of lipoxin A by granulocytes from eosinophilic donors   总被引:3,自引:0,他引:3  
The formation of arachidonic acid-derived lipoxygenase products was examined with human granulocytes obtained from eosinophilic donors. These eosinophil-enriched leukocyte populations, challenged in vitro with the ionophore of divalent cations A23187, transformed both exogenous and endogenous sources of arachidonic acid to several lipoxygenase-derived products, including 5(S), 6(R),15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (lipoxin A). Lipoxin A was detected and characterized by high-pressure liquid chromatography (HPLC), ultraviolet absorbance, and gas-liquid chromatography-mass spectroscopy. Neither lipoxin B nor 6(S)-LXA was consistently detected in extracts from these incubations. The amounts of lipoxin A formed were proportional to the percentage of eosinophils present in the suspension. The results indicate that granulocytes from eosinophilic donors can generate lipoxin A.  相似文献   

3.
Human platelets are devoid of 5-lipoxygenase activity but convert exogenous leukotriene A4 (LTA4) either by a specific LTC4 synthase to leukotriene C4 or via a 12-lipoxygenase mediated reaction to lipoxins. Unstimulated platelets mainly produced LTC4, whereas only minor amounts of lipoxins were formed. Platelet activation with thrombin, collagen or ionophore A23187 increased the conversion of LTA4 to lipoxins and decreased the leukotriene production. Maximal effects were observed after incubation with ionophore A23187, which induced synthesis of comparable amounts of lipoxins and cysteinyl leukotrienes (LTC4, LTD4 and LTE4). Chelation of intra- and extracellular calcium with quin-2 and EDTA reversed the ionophore A23187-induced stimulation of lipoxin synthesis from LTA4 and inhibited the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) from endogenous substrate. However, calcium did not affect the 12-lipoxygenase activity in the 100 000 × g supernatant of sonicated platelet suspensions. Furthermore, the stimulatory effect on lipoxin formation induced by platelet agonists could be mimicked in intact platelets by the addition of low concentrations of arachidonic acid, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) or 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results indicate that the elevated lipoxin synthesis during platelet activation is due to stimulated 12-lipoxygenase activity induced by endogenously formed 12-HPETE.  相似文献   

4.
Transformation of leukotriene A4 to lipoxins by rat kidney mesangial cell   总被引:1,自引:0,他引:1  
Incubation of rat mesangial cells with leukotriene A4 in the presence of calcium ionophore A23187 led to a substrate dependent formation of lipoxin and its isomers. The major metabolite coeluted with authentic lipoxin A4 (LXA4) and lipoxin B4 (LXB4) in RP-HPLC system, and possessed a characteristic U.V. spectrum and C-value which were identical to authentic standards. GC/MS analysis on LXA4 further demonstrates that the mesangial cell derived LXA4 was identical to that reported by Serhan et al. (1) as LXA4 [5(S), 6,(R), 15(S)-trihydroxy7,9,13-trans-11-cis-eicosatetraenoic acid]. The formation of LXA4 was linear with substrate (LTA4) concentration. No similar products occurred in boiled controls. Incubation of mesangial cell with 15-HPETE failed to produce any lipoxin-like material. The absence of LX-like substance following incubation of 15-HPETE with mesangial cells suggested that 5-lipoxygenase activity is not expressed in mesangial cells under these conditions. The generation of LXA4 from LTA4 in mesangial cells suggested that there is an active 15- or 12- lipoxygenase activity in the kidney. The production of LX may play an important role in the regulation of renal function and the response to inflammatory stimuli.  相似文献   

5.
Human platelets dose-dependently converted exogenous leukotriene A4 to leukotriene C4 and efficiently metabolized this compound to leukotrienes D4 and E4. Neither of these compounds were produced after stimulation of human platelet suspensions with ionophore A23187. After LTA4 incubation of subcellular fractions, formation of leukotriene C4 was exclusively observed in the particulate fraction and was separable from the classical glutathione S-transferase activity. This suggested the presence of a specific leukotriene C4 synthase in human platelets. Addition of physiological amounts of autologous platelets to human granulocyte suspensions significantly increased ionophore A23187-induced formation of leukotriene C4. In contrast, the production of leukotriene B4 was decreased. After preincubation of platelets with [35S]cysteine, 35S-labeled leukotriene C4 was produced by A23187-stimulated platelet-granulocyte suspensions, strongly indicating a transcellular biosynthesis of this compound.  相似文献   

6.
Bovine polymorphonuclear leukocytes exhibit a 12-lipoxygenase activity upon sonication. In contrast to bovine platelet 12-lipoxygenase and other 12-lipoxygenases, this enzyme is unable to convert 5(S)-HETE (5(S)-hydroxy,6-trans-8,11,14-cis-eicosatetraenoic acid) or 5(S)-HPETE (5(S)-hydroperoxy,6-trans-8,11,14-cis-eicosatetraenoic acid) into 5(S),12(S)-dihydroxy-6,10-trans,8,14-cis-eicosatetraenoic acid. Surprisingly, the formation of leukotriene A4-derived products namely leukotriene B4 and the leukotriene B4-isomers 12-epi,6-trans- leukotriene B4 and 6-trans-leukotriene B4, was observed upon incubation of this enzyme with 5(S)-HPETE. Hence, the 12-lipoxygenase from bovine polymorphonuclear leukocytes possesses leukotriene A4-synthase activity.  相似文献   

7.
Rainbow trout macrophages maintained in short term culture when incubated with either calcium ionophore, A23187, or opsonized zymosan synthesize a range of lipoxygenase products including lipoxins and leukotrienes. These cells are unusual in that they generate more lipoxin than leukotriene following such challenge. The main lipoxin synthesized was lipoxin (LX) A4. This compound was identified by cochromatography with authentic standard during reversephase high performance liquid chromatography, by ultra violet spectral analysis, radiolabeling following incorporation of [14C]arachidonic acid substrate into macrophage phospholipids, and gas chromatography electron impact mass spectrometry of the methyl ester, trimethylsilyl ether derivative. Other 4-series lipoxins synthesized by trout macrophages were identified as 11-trans-LXA4, 7-cis-11-trans-LXA4, and 6(S)-LXA4. These cells also produced 5-series lipoxins tentatively identified as LXA5, 11-trans-LXA5 and possibly 6(S)-LXA5. No LXB4 or LXB5 was, however, detected. The dynamics of leukotriene and lipoxin release were also determined. Lipoxin generation was slower than leukotriene generation the latter reaching a maximum after 30 min of exposure to ionophore (5 microM, 18 degrees C) compared with 45 min for the former.  相似文献   

8.
Transcellular lipoxygenase metabolism between monocytes and platelets   总被引:4,自引:0,他引:4  
We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.  相似文献   

9.
Enzymic Synthesis of Leukotriene B4 in Guinea Pig Brain   总被引:1,自引:8,他引:1  
Leukotriene B4 [5(S), 12(R)-dihydroxy-6, 14-cis-8,10-trans-eicosatetraenoic acid] was obtained from endogenous arachidonic acid when slices of the guinea pig brain cortex were incubated with the calcium ionophore A 23187. Enzymes involved in its synthesis, arachidonate 5-lipoxygenase [arachidonic acid to 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid and subsequently to leukotriene A4] and leukotriene A4 hydrolase (leukotriene A4 to B4), were present in the cytosol fraction. Arachidonate 5-lipoxygenase was Ca2+-dependent, and was stimulated by ATP and the microsomal membrane, as was noted for the enzyme from mast cells. The lipid hydroperoxides stimulated 5-lipoxygenase by four- to sixfold. The leukotriene A4 hydrolase activity was rich in brain, and the specific activity (0.4 nmol/min/mg of protein) was much the same as that of guinea pig leukocytes. High activities of these enzymes were detected in the olfactory bulb, pituitary gland, hypothalamus, and cerebral cortex. Since leukotriene B4 is enzymically synthesized in the brain, possible roles related to neuronal functions or dysfunctions deserve to be examined.  相似文献   

10.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

11.
Addition of (15S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE) and the ionophore A23187 (2.5 microM) to human neutrophils led to the formation of both lipoxin A4 and lipoxin B4 as well as a novel 5,6,15-trihydroxyeicosatetraenoic acid. The new compound was identified using an improved isolation and detection system and its basic structure was determined by physical methods. On the basis of biosynthetic considerations, geometric isomers of lipoxin A4 and lipoxin B4 were prepared by total synthesis. Comparison of these synthetic materials with the neutrophil-derived product showed that the new compound is (5S,6R,15S)-trihydroxy-9,11,13-trans-7-cis-eicosatetraenoic acid or the 7-cis-11-trans-isomer of LXA4 (7-cis-11-trans-LXA4). LXA4, 11-trans-LXA4, 7-cis-LXA4 and 7-cis-11-trans-LXA4 all evoked dose-dependent (0.1-10 microM) contractions of the guinea pig lung strip, whereas 6-cis-LXB4 and 6-cis-8-trans-LXB4 relaxed this preparation. LXA4 and 7-cis-LXA4 were approx. 10-times more potent than the compounds with 11-trans geometry. However, all four double-bond isomers of LXA4 caused contractions which, based upon pharmacological evidence, appeared to involve specific activation of the same site as cysteinyl-containing leukotrienes. In conclusion, 7-cis-11-trans-LXA4 was isolated and identified as a novel biologically active eicosanoid formed by human neutrophils.  相似文献   

12.
Purified human T-lymphocytes exhibit 5-lipoxygenase activity as demonstrated by the conversion of arachidonic acid to 5-hydroxy-eicosatetraenoic acid (5-HETE), 5(S),12(R)-di-hydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid (leukotriene B4), and 5,12-di-HETE isomers of leukotriene B4 that lack a 6-cis double bond. The concentrations of leukotriene B4, 5-HETE, 11-HETE and 15-HETE in suspensions of T-lymphocytes were increased significantly by concanavalin A and by the calcium ionophore A23187. Preincubation of T-lymphocytes with 15-HETE at μM concentrations, characteristic of suspensions of stimulated lymphocytes, inhibited selectively the increases in the levels of 5-HETE and leukotriene B4, but not of 11-HETE and prostaglandin E2.  相似文献   

13.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

14.
Lipoxin A. Stereochemistry and biosynthesis   总被引:8,自引:0,他引:8  
Lipoxin A (LXA) was prepared by incubation of either (15S)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE) or (15S)-15-hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic (15-HPETE) with human leukocytes stimulated by either the ionophore A23187 or the chemotactic peptide fMet-Leu-Phe. Comparison with four trihydroxyeicosatetraenoic acids prepared by total synthesis showed that biologically derived LXA is 5S,6R,15S)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid. Three isomers of LXA were also identified in extracts of leukocytes utilizing an improved isolation procedure. These were (5S,6S,15S)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (6S-LXA), (5S,6R,15S)-5,6,15-trihydroxy-7,9,11,13-trans-eicosatetraenoic acid (11-trans-LXA), and (5S,6S,15S)-5,6,15-trihydroxy-7,9,11,13-trans-eicosatetraenoic acid (6S-11-trans-LXA). 18O2-labeling studies indicated that formation of LXA and its isomers occurred with incorporation of 18O at their C-5 but not C-6 positions. These results suggest that 15-hydroxy-5,6-epoxy-7,9,13-trans-11-cis-eicosatetraenoic acid or its equivalent may serve as one intermediate in the biosynthesis of LXA and 6S-LXA. When added to guinea pig lung strips LXA provoked contractions which were slow in onset and long lasting. In addition, dose response studies showed that biologically derived LXA and synthetic LXA were indistinguishable in this bioassay whereas synthetic 6S-LXA and biologically derived 6S-LXA did not share this activity. Taken together, these results suggest that activated leukocytes utilize exogenous 15-HETE to generate lipoxins which in turn can modulate cellular responses.  相似文献   

15.
Incubation of bovine polymorphonuclear leukocytes (PMNs) with arachidonic acid leads to the formation of four lipoxins. The same lipoxins are also formed upon incubation of bovine PMNs with 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5(S)-hydroperoxy, 15(S)-hydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid or 5(S),15(S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid. A 5,6-epoxide as intermediate in lipoxin formation in the bovine PMN is highly improbable because the 5-hydroxy compounds are as good substrates as the 5-hydroperoxy compounds. Moreover, the two main lipoxins were found to coelute with the two lipoxins produced via a triple dioxygenation of arachidonic acid by soybean lipoxygenase-1. Hence the bovine PMN is the first cell for which evidence is presented that the formation of lipoxins proceeds mainly via triple dioxygenation and not via 15-hydroxy-leukotriene A4 as is proposed for human and porcine PMNs.  相似文献   

16.
This study investigates the effect of platelet/neutrophil interactions on eicosanoid production. Human platelets and polymorphonuclear leukocytes (PMNs) were stimulated alone and in combination, with calcium ionophore A23187 and the resulting eicosanoids 12S-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid (12-HETE), 12S-heptadecatrienoic acid (HHT), 5S,12R-dihydroxy-(6Z,8E,10E,14Z)-eicosatetraenoi c acid (LTB4) and 5S-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE) were measured by HPLC. The addition of PMNs to platelet suspensions caused a 104% increase in 12-HETE, a product of 12-lipoxygenase activity, but had only a modest effect on the cyclooxygenase product HHT (increase of 18%). By using PMNs labelled with [14C]arachidonic acid it was shown that the increases in these platelet eicosanoids could be accounted for by translocation of released arachidonic acid from PMNs to platelets and its subsequent metabolism. The observation that 12-lipoxygenase was about five times more efficient than cyclooxygenase at utilising exogenous arachidonic acid during the platelet/PMN interactions was confirmed in experiments in which platelets were stimulated with A23187 in the presence of [14C]arachidonic acid. Stimulations of platelets with thrombin in the presence of PMNs resulted in a decrease in 12-HETE and HHT levels of 40% and 26%, respectively. The presence of platelets caused a small increase in neutrophil LTB4 output but resulted in a decrease in 5-HETE production of 43% during stimulation with A23187. This study demonstrates complex biochemical interactions between platelets and PMNs during eicosanoid production and provides evidence of a mechanism to explain the large enhancement in 12-HETE production.  相似文献   

17.
Eicosanoid biosynthesis was examined with a human megakaryocytic cell line (Dami). Megakaryocytes incubated with [1-14C]arachidonic acid and either ionophore A23187 or thrombin generated both thromboxane and 12-hydroxyheptadecatrienoic acid (HHTrE). Exposure to phorbol myristate acetate (PMA) for 1 through 9 days induced differentiation and revealed an increase in the conversion of [1-14C]arachidonate to cyclooxygenase- and lipoxygenase (LO)-derived products. The LO-derived product was identified as 12S-HETE by its physical characteristics including GC/MS and chiral column SP-HPLC. PMA-treated Dami cells did not generate 5-HETE, leukotrienes or lipoxins from exogenous arachidonic acid while they did convert leukotriene A4 (LTA4) to lipoxin A4, lipoxin B4 and their respective all-trans isomers. In addition, COS-M6 cells transfected with a human 12-lipoxygenase cDNA and incubated with either arachidonic acid or LTA4 generated 12-HETE and lipoxins, respectively. The lipoxin profile generated by transfected COS-M6 cells incubated with LTA4 was similar to that generated by the PMA-treated Dami cells. Results indicate that human megakaryocytes can transform arachidonate and LTA4 to bioactive eicosanoids and that the 12-lipoxygenase appears upon further differentiation of these cells. In addition, they indicate that the 12-LO of human megakaryocytes and the 12-LO expressed by transfected COS cells can generate both lipoxins A4 and B4. Together they suggest that the human 12-LO can serve as a model of LX-synthetase activity with LTA4.  相似文献   

18.
New series of lipoxins isolated from human eosinophils   总被引:1,自引:0,他引:1  
D Steinhilber  H J Roth 《FEBS letters》1989,255(1):143-148
Granulocytes from human eosinophilic donors were incubated with arachidonic acid or 15-hydroxyeicosatetraenoic acid (15-HETE) and stimulated with the ionophore A23187. The eicosanoids were extracted with reversed-phase cartridges and subjected to RP-HPLC analysis. When extracts from eosinophil-enriched populations were analysed and compared with extracts from human neutrophils, three additional peaks were detected which coeluted with 15-hydroxy-delta 13-trans-15H derivatives of leukotriene C4, D4 and E4 in different HPLC systems. The recorded absorbance spectra of the eluted compounds and the standards were identical and showed a maximum at 307 nm which is characteristic for a conjugated tetraene system with a bathochromic shift by the sulfur moiety in alpha-position to the tetraene system. The compound which coeluted with the 15-hydroxy-LTC4 standard was treated with gamma-glutamyltransferase and converted to the corresponding leukotriene D4 derivative. The results indicate that interaction between the 5- and 15-lipoxygenase pathways leads to the formation of a new series of arachidonic acid metabolites in human eosinophils. Since the biosynthetic route is similar to that of lipoxin A4 and lipoxin B4, we suggest the trivial names lipoxin C4, D4 and E4.  相似文献   

19.
Severe cerebral vasospasm as confirmed by angiography was induced in dogs by injection of autologous blood into the cisterna magna, and the resultant leukotriene formation in the isolated basilar artery was examined. When stimulated with calcium ionophore (A 23187), the arteries of the treated animals produced a significant amount of leukotrienes B4 (85 +/- 12 pmol/mg protein, n = 3) and C4 (72 +/- 14 pmol/mg), in addition to 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid. Structural elucidations of these metabolites were performed by radioimmunoassays or gas chromatography-mass spectrometry, following purification with HPLC. The artery of the untreated dog produced none of these compounds from either exogenous or endogenous arachidonic acid, under stimulation with the calcium ionophore. However, the homogenates from both animals converted exogenous leukotriene A4 to leukotrienes B4 and C4. These observations suggest that the normal basilar artery contains no detectable amount of 5-lipoxygenase, and that a prominent activation of this enzyme occurred (2.1 nmol 5-HETE/5 min/mg of protein) after subarachnoidal hemorrhage. The observation that fatty acid hydroperoxides stimulated the 5-lipoxygenase activity indicates a possible role of lipid peroxides in the development of vasospasm.  相似文献   

20.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号