首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Biological denitrification of high nitrate-containing wastewater was examined in a sulfur-packed column using a smaller amount of methanol than required stoichiometrically for heterotrophic denitrification. In the absence of methanol, the observed nitrate removal efficiency was only about 40%, and remained at 400 mg NO(3)(-)-N/l, which was due to an alkalinity deficiency of the pH buffer and of CO(2) as a carbon source. Complete denitrification was achieved by adding approximately 1.4 g methanol/g nitrate-nitrogen (NO(3)(-)-N) to a sulfur-packed reactor. As the methanol concentration increased, the overall nitrate removal efficiency increased. As influent methanol concentrations increased from 285 to 570, 855, and 1,140 mg/l, the value of Delta mg alkalinity as CaCO(3) consumed/Delta mg NO(3)(-)-N removed increased from -1.94 to -0.84, 0.24, and 0.96, and Delta mg SO(4)(2-) produced/Delta mg NO(3)(-)-N removed decreased from 4.42 to 3.57, 2.58, and 1.26, respectively. These results imply the co-occurrence of simultaneous autotrophic and heterotrophic denitrification. Sulfur-utilizing autotrophic denitrification in the presence of a small amount of methanol is very effective at decreasing both sulfate production and alkalinity consumption. Most of methanol added was removed completely in the effluent. A small amount of nitrite accumulated in the mixotrophic column, which was less than 20 mg NO(2)(-) -N/l, while under heterotrophic denitrification conditions, nitrite accumulated steadily and increased to 60 mg NO(2)(-) -N/l with increasing column height.  相似文献   

2.
基于响应面法对一株好氧反硝化菌脱氮效能优化   总被引:2,自引:1,他引:1  
【目的】水体富营养化是当今我国水环境面临的重大水域环境问题,氮素超标排放是主要的引发因素之一。好氧反硝化菌构建同步硝化反硝化工艺比传统脱氮工艺优势更大。获得高效的好氧反硝化菌株并通过生长因子优化使脱氮效率达到最高。【方法】经过序批式生物反应器(Sequencing batch reactor,SBR)的定向驯化,筛选获得高效好氧反硝化菌株,采用响应面法优化好氧反硝化过程影响总氮去除效率的关键因子(碳氮、溶解氧、pH、温度)。【结果】从运行稳定的SBR反应器中定向筛选高效好氧反硝化菌株Pseudomonas T13,采用响应面法对碳氮比、pH和溶解氧关键因子综合优化获得在18 h内最高硝酸盐去除率95%,总氮去除率90%。该菌株的高效反硝化效果的适宜温度范围为25?30 °C;最适pH为中性偏碱;适宜的COD/NO3?-N为4:1以上;最佳溶解氧浓度在2.5 mg/L。【结论】从长期稳定运行的SBR反应器中筛选获得一株高效好氧反硝化菌Pseudomonas T13,硝酸盐还原酶比例占脱氮酶基因的30%以上,通过运行条件优化获得硝氮去除率达到90%以上,对强化废水脱氮工艺具有良好应用价值。  相似文献   

3.
Wan D  Liu H  Qu J  Lei P  Xiao S  Hou Y 《Bioresource technology》2009,100(1):142-148
A combined bioelectrochemical and sulfur autotrophic denitrification system (CBSAD) was evaluated to treat a groundwater with nitrate contamination (20.9-22.0mgNO(3)(-)-N/L). The reactor was operated continuously for several months with groundwater to maximize treatment efficiency under different hydraulic retention times (HRT) and electric currents. The denitrification rate of sulfur autotrophic part followed a half-order kinetics model. Moreover, the removal efficiency of bioelectrochemical part depended on the electric current. The reactor could be operated efficiently at the HRT ranged from 4.2 to 2.1h (corresponding nitrogen volume-loading rates varied from 0.12 to 0.24 kg N/m(3)d; and optimum current ranged from 30 to 1000 mA), and the NO(3)(-)-N removal rate ranged from 95% to 100% without NO(3)(-)-N accumulation. The pH of effluent was satisfactorily adjusted by bioelectrochemical part, and the sulfate concentration of effluent was lower than 250 mg/L, meeting the drinking water standard of China EPA.  相似文献   

4.
Sponza DT  Atalay H 《Anaerobe》2004,10(5):287-293
In this study, the effects of COD to NO(3)-N ratio in the feed on PO(4)-P removal was investigated. Maximum PO(4)-P uptake was obtained in the anoxic reactor when the COD to NO(3)-N ratios were between 2 and 3.75. With the influent COD of 800-1500 mg COD/L a total of the maximum removable PO(4)-P was 56 mg PO(4)-P/L through 20 days of anaerobic/anoxic incubation, indicating 98% P removal in the anoxic reactor. Similarly, for the COD to NO(3)-N ratios varying between 2 and 3.75 maximum denitrification was observed. Through anoxic operation the poly-P bacteria are capable of removing NO(3)-N using VFA, COD as carbon source and NO(3)-N as the electron acceptor after methanogenesis has been completed. High NO(3)-N concentrations stopped significantly the P uptake. A total of 97-99% dinitrotoluene removal efficiencies in the reactors containing COD to NO(3)-N ratio of 2 and 3.75 after 20 days of incubation period. For maximum NO(3)-N and PO(4)-P removals optimal COD to NO(3)-N ratios, COD and NO(3)-N concentrations were 2-3.75, 2000-4000 mg COD/L and, 800-1500 mg NO(3)-N/L, respectively.  相似文献   

5.
This paper presents the integrated removal of carbon (measured as chemical oxygen demand i.e. COD) and NO(x)-N by sequentially adapted sludge, studied in an airlift reactor (ALR). Simultaneous removal of COD and nitrate occurs by denitrification (anoxic) and oxidation (aerobic). Aerobic (riser) and anoxic (remaining part) conditions prevail in different parts of the reactor. Studies were carried out in a 42 L ALR operated at low aeration rate to maintain anoxic and aerobic conditions as required for denitrification and COD removal, respectively. The sludge was adapted sequentially to increasing levels of NO(x)-N and COD over a period of 45 days. Nitrate removal efficiency of the sludge increased due to adaptation and degraded 900 ppm NO(3)-N completely in 2h (initially the sludge could not degrade 100 ppm NO(3)-N). The performance of the adapted sludge was tested for the degradation of synthetic waste with COD/N loadings in the range of 4-10. The reduction of COD was significantly faster in the presence of NO(x)-N and was attributed to the availability of oxygen from NO(x)-N and distinct conditions in the reactor. This hypothesis was justified by the material balance of COD.  相似文献   

6.
Sun F  Wu S  Liu J  Li B  Chen Y  Wu W 《Bioresource technology》2012,103(1):109-115
Effects of different chemical oxygen demand (COD) to nitrate concentration ratios in the injected leachate on the denitrification capacity of landfilled municipal solid waste were evaluated. Results showed that the 6-year-old refuse possessed high denitrification capacity. The nitrate reduction rate increased with the increasing COD concentration in the injected leachate. When the initial COD concentration increased to 6500 mg l(-1), nitrate reduction rate could reach up to 6.85 mg NO3--N l(-1) h(-1). At the initial biodegradable COD/NO3--N ratio lower than the stoichiometric ratio of heterotrophic denitrification, autotrophic bacteria was the dominant microbial communities for denitrification. With the increase of COD/NO3--N ratio, the primary functional denitrifier would shift from autotrophic Thiobacillus denitrificans to heterotrophic Azoarcus tolulyticus. These results suggested that the initial biodegradable COD/NO3--N ratio in the injected leachate should be adjusted to higher than 6.0 for rapid in situ denitrification of 500 mg NO3--Nl(-1).  相似文献   

7.
【背景】低碳氮比生活污水很难达标处理,多级A/O工艺、生物强化技术及生物膜技术的有机结合可有效解决这一问题。【目的】开发出一种泥膜共生多级A/O工艺并进行中试研究,驯化出高效脱氮除磷菌剂并对系统进行生物强化。【方法】通过测定中试设备出水及污水处理厂出水化学需氧量(Chemical oxygen demand,COD)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)对比分析两种工艺的污染物去除效能,利用高通量测序技术对比生物强化技术对系统微生物群落结构的影响。【结果】中试设备对COD、NH_4~+-N、NO_3~--N、TN、TP的去除效果均优于污水处理厂的处理工艺;驯化的低温好氧反硝化菌TN去除率最大值可达84.21%,驯化的低温反硝化聚磷菌群对磷的去除率最高可达85.75%;利用驯化菌群对中试设备进行生物强化后较好地改善了系统NH_4~+-N、NO_3~--N、TN、TP的去除效果;经生物强化后,具有好氧反硝化和反硝化聚磷功能的Pseudomonas菌群明显增多。【结论】泥膜共生多级A/O工艺对于低碳氮比生活污水的处理具有很好的效果,利用生物强化技术可有效提高低温条件下系统污染物去除效能。  相似文献   

8.
AIMS: This study attempted to demonstrate nitrite interference on chemical oxygen demand (COD) determination in piggery wastewater, and the capability of aerobic denitrification of the SU2 strain which is capable of promoting the efficiency of nitrogen and COD removal from piggery wastewater. METHODS AND RESULTS: This study was performed in a 17-litre reactor with a 30% packing ratio, with a ratio of immobilized SU2 cells to sludge of 100:1. The ratio of aeration to nonaeration was 4 : 1.5. Removal efficiency of COD was 86.8%. Removal efficiency of BOD and SS was higher than 90%, and removal efficiency of NH4+-N and TKN was almost 100%. CONCLUSIONS: NO2- -N interference is significant when its concentration in piggery wastewater exceeds 100 mg l-1. COD in piggery wastewater can be indirectly reduced following nitrite reduction by SU2 strain. SIGNIFICANCE AND IMPACT OF THE STUDY: Utilizing immobilized SU2 cells in coordination with an SBR system simultaneously reduces nitrite and COD concentrations.  相似文献   

9.
The sulfur-utilizing autotrophic denitrification process consumes about 4 g alkalinity (as CaCO(3)) per g NO(3)-N reduced resulting in a decrease of pH. Using limestone as an alkalinity source to control the pH, autotrophic denitrification of synthetic wastewater with varying alkalinity to NO(3)-N ratios was evaluated in pilot-scale packed bed reactors operating in the upflow mode, which contained limestone and sulfur granules in different volumetric ratios. The results demonstrated that limestone supplies effective buffering capacity, if the initial alkalinity of the wastewater is insufficient for complete denitrification. The alkalinity supplied by limestone is a function of hydraulic retention time and the pH, which in turn depends on the extent of biological denitrification and the initial alkalinity to NO(3)-N ratio in the wastewater. The dissolution rate of limestone is inversely proportional to pH for pH values lower than 7.1. It was found that the ratio of influent alkalinity to theoretically required alkalinity in the wastewater should not be lower than 0.5 in order to prevent a decrease in nitrate removal performance. Based on the established chemical-biological interactive relationships, a multilayer approach was proposed to determine the optimum sulfur:limestone ratio for nitrate removal under steady state conditions, taking into account the characteristics of the influent wastewater.  相似文献   

10.
A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from 0.50 to 1.01 kg N/m3·d, the PBR exhibited 100∼98.8% NO3 -N removal efficiencies and nitrite concentrations in the effluent ranged from 0 to 0.6 NO2 -N mg/L. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than 1.01 kg N/m3·d, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.  相似文献   

11.
This study investigated the feasibility of using pre-treated plant liquors as organic carbon sources for the treatment of hydroponic wastewater containing high nitrate-N (>300 mg N/L). The waste plant material was pre-treated to extract organic carbon-rich liquors. When this plant liquor was used as an organic carbon source in denitrification filters at the organic carbon:nitrogen dose rate of 3C:N, nitrate removal efficiencies were >95% and final effluent nitrate concentrations were consistently <20mg N/L. However, at this dose rate, relatively high concentrations (>140 mg/L) of organic carbon (fBOD5) remained in the final effluents. Therefore, a 'compromise' organic carbon:nitrogen dose rate (2C:N) was trialled, at which nitrate removal efficiencies were maintained at >85%, final effluent nitrate concentrations were consistently below 45 mg N/L, and effluent fBOD5 concentrations were <25mg/L. This study has demonstrated that waste plant material is a suitable carbon source for the removal of nitrate from hydroponic wastewater in a denitrification filter.  相似文献   

12.
This study investigated the effects of the internal recycling rate on nutrients removal in a sequential anoxic/anaerobic membrane bioreactor (SAM). Microbial community structure in sludge from the SAM was studied using quinone profile method. Above 98% COD, 68% nitrogen, and 55% phosphorus removal efficiencies were achieved when the internal recycling rate was 2.5 times influent flow. At that rate, the optimum specific nitrate loading rate and COD/NO(3)-N ratio were found to be 2.24 mgNO(3)-N g(-1) MLSS h(-1) and 9.13, respectively. Batch tests demonstrated that anoxic condition suppressed phosphorus release, and that denitrification was also influenced by initial substrate concentration. Denitrification appeared to have some priority over phosphorus release for substrate uptake. Microbial community analysis revealed a predominance of the subclass beta-Proteobacteria. Furthermore, it was found that Rhodocyclus-related bacteria were efficient at phosphorus removal than Actinobacteria.  相似文献   

13.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

14.
A laboratory-scale hybrid-denitrification filter (HDF) was designed by combining a plant material digester and a denitrification filter into a single unit for the removal of nitrate and phosphorus from glasshouse hydroponic wastewater. The carbon to nitrate (C:N) ratio for efficient operation of the HDF was calculated to be 1.93:1 and the COD/BOD5 ratio was 1.2:1. When the HDF was continuously operated with the plant material replaced every 2 days and 100% internal recirculation of the effluent, a high level of nitrate removal (320–5 mg N/L, >95% removal) combined with a low effluent sBOD5 concentration (<5 mg/L) was consistently achieved. Moreover, phosphate concentrations in the effluent were maintained below 7.5 mg P/L (>81% reduction). This study demonstrates the potential to combine a digester and a denitrification filter in a single unit to efficiently remove nitrate and phosphate from hydroponic wastewater in a single unit.  相似文献   

15.
The effect of benzene on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. Benzene at 10 mg/L inhibited nitrate formation by 53%, whereas at 5 mg/L there was no inhibition. For initial benzene concentrations of 0, 7, and 10 mg/L, the specific rates of NO(3)(-)-N production were 0.545 +/- 0.101, 0.306 +/- 0.024, and 0.141 +/- 0.010 g NO(3)(-)-N/g microbial protein-N.h, respectively. The specific rates of benzene consumption at 7, 12, and 20 mg/L were 0.034 +/- 0.003, 0.050 +/- 0.006, and 0.027 +/- 0.002 g/g microbial protein-N.h, respectively. Up to a concentration of 10 mg/L, benzene was first oxidized to phenol, which was later totally oxidized to acetate. Benzene at higher concentrations (20 and 30 mg/L) was converted to intermediates other than acetate, phenol, or catechol. These results suggest that this type of nitrifying consortium coupled with a denitrification system may have promising applications for complete removal of nitrogen and benzene from wastewaters.  相似文献   

16.
Sequencing batch operation was used for nutrient (COD, NH4-N, NO3-N, PO4-P) removal from synthetic wastewater by using different carbon sources. Operation consisted of anaerobic, anoxic, oxic, anoxic and oxic (An/Ax/Ox/Ax/Ox) phases with durations of 2/1/4.5/1.5/1.5 h. Glucose, acetate and a mixture of glucose/acetate were used as carbon source to yield a COD/N/P ratio of 100/5/1.5 in the feed. Sludge age was kept constant at 10 days. COD, NH4-N, NO3-N and PO4-P removal efficiencies were maximum at the levels of 96%, 87%, 81% and 90% respectively, when a mixture (50/50) of glucose and acetate was used.  相似文献   

17.
The applicability of the mixed bacterial culture, originated from two-stage anaerobic-aerobic industrial yeasts production wastewater treatment plant for high rate denitrification processes was investigated. After acclimation to nitrate, the dominant strains were Pseudomonas and Paracoccus sp. Complete denitrification with low accumulation of nitrite-N (0.1 mg/l) was found in synthetic wastewater, obeying a zero-order reaction with respect to nitrate and a first-order reaction with respect to biomass concentration. Denitrification was then monitored in the continuous-flow stirred reactor at different hydraulic retention time, HRT (62-28 h) in order to achieve the optimal HRT. Nitrate was completely removed during following 45 days, at 25 degrees C with HRT, which we reduced from 62 to 28 h. Yet still, at 28 h HRT, high average specific denitrification rate of 142 mg NO3- -N/g VSS h was obtained.  相似文献   

18.
The removal of nitrogen from industrial wastewaters carrying about 1,000 mg NH4-N and urea-N/l was investigated on a laboratory scale. The use of a three-step nitryfying activated sludge with adjustment of pH from step to step resulted in 99% oxidation of both forms of nitrogen to nitrites. The efficiency of nitrification was 18 mg N/l/h. Total time of wastewater aeration depended on nitrogen concentration and was 33-54 hours. Complete dentrification of NO2-N was obtained in packed-bed reactor with the use of acetic acid as a carbon source. Efficiency of denitrification was 361 mg N/l/h.  相似文献   

19.
关于好氧反硝化菌筛选方法的研究   总被引:30,自引:0,他引:30  
采用污泥驯化手段富集好氧反硝化细菌,将得到的驯化污泥分离纯化,共得到105株菌。用测TN的方法对所筛菌株进行初筛,得到25株对TN去除率达到50%以上的菌株。用氮元素轨迹跟踪测定法复筛,证实这25株菌都可以在好氧条件下进行硝酸盐呼吸,其中24株菌的反硝化过程为:NO3^-N→NO2^-N→N2,研究中还发现在反硝化过程中硝酸盐和亚硝酸盐不存在明显竞争被利用的作用。同时还提出了可能实现短程同步硝化反硝化以及在反馈作用的调节下,加快硝化反应速度的观点。  相似文献   

20.
【背景】好氧反硝化是指在有氧条件下进行反硝化作用,使得硝化和反硝化过程能够在同一反应器中同时发生,是废水脱氮最具竞争力的技术。红树林湿地中蕴藏着丰富的微生物资源,分布着大量好氧反硝化微生物。【目的】了解耐盐微生物的脱氮机制,为含盐废水生物脱氮的工程实践提供理论依据,对一株分离于红树林湿地中的耐盐好氧细菌A63的硝酸盐异化还原能力进行分析。【方法】利用形态学特征及16S rRNA基因序列测定分析,对其种属进行了鉴定,采用单因子实验测定该菌在不同环境因子下的硝酸盐还原能力,并对其反硝化脱氮条件进行了优化。【结果】初步判定该菌株为卓贝儿氏菌(Zobellellasp.),其能在盐度0%-10%、pH5.0-10.0、温度20-40°C范围内进行反硝化脱氮和硝酸盐异化还原为氨(dissimilatorynitratereductiontoammonium,DNRA)作用。菌株A63最适生长碳源为柠檬酸钠(1.2 g/L),适宜脱氮盐度为3%、pH 7.0-7.5、温度30-35°C,且C/N为10。在最适脱氮条件下,该菌株12h内能将培养基中208.8mg/L硝态氮降至0,且仅有少量铵态氮生成...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号