首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effects of electrical stimulation of the substantia nigra (NS) pars compacta on somatosensory response in pontine neurons (from n. reticularis pontis caudalis) and reticular cells (n. reticularis gigantocellularis) were investigated in chloralosed cats. These effects were found to be inhibitory and tended mainly towards high-threshold activation of reticular neurons: responses induced by activation of high-threshold somatic efferents were those mainly inhibited in 71% of test cells. Inhibition of low-threshold response induced by tactile stimuli emerged less clearly or not at all. Potential mechanisms and the functional significance of these SN influences on reticular neurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 772–780, November–December.  相似文献   

2.
In the present study some qualitative and quantitative features of the reticular formation of the medulla oblongata, pons and midbrain have been elucidated by cytoarchitectonic methods in the dolphin (Tursiops truncatus). The studies have demonstrated that similar to land mammalia, the dolphin has a reticular formation made up of spatially open cell groups lying in the deepest parts of the brain stem. Cytoarchitectonically the component parts of the reticular formation show a number of peculiarities enabling us to distinguish separate nuclei. In the dolphin peculiar architectonics have been observed in the nucleus gigantocellularis medullae oblongatae, nucleus papillioformis or the nucleus reticularis tegmenti Bechterewi and the nucleus centralis superior medialis seu ventralis. Fairly poor in cells are the nucleus centralis caudalis pontis and the nucleus centralis oralis pontis. We failed to single out as autonomous nuclei cell groups corresponding to the nucleus funiculi lateralis and the nucleus paratrochlearis of the land mammalia. The size and density of cells in nuclei have a number of peculiarities. The analysis of the ratios of the brainstem volume to that of reticular structures has shown them to be the smallest in the dolphin as compared with land mammals. The smaller share held by the brain-stem reticular formation and its cytoarchitectonic features can be associated with the functional properties resulting from the greater specialization of some of brain-stem systems (e.g. auditory, vestibular, extrapyramidal etc.) in the dolphin in comparison with land mammals.  相似文献   

3.
The response pattern of reticulo-spinal (RS) neurons in two reticulo-spinal structures (n. reticularus pontis caudalis and n. reticularis gigantocellularis) to both electrical (somatic) nerve stimulation and natural mechanical innocuous (tapping with varying force) and noxious (pinch and prick) stimulation were investigated in chloralose-anesthetized cats. Bulbar and pontine neurons were found to vary considerably in their sensory characteristics: of the former 43% were activated only by high-threshold electrical nerve stimulation and noxious stimuli, while the remainder responded to innocuous stimuli as well. In the case of pontine neurons 81% produced a response to stimulation of low-threshold nerve fibers, and to innocuous as well as noxious stimuli. A relationship was found between the sensory characteristics of reticulo-spinal neurons and their axon conductance velocities. Various aspects and the likely functional significance of specialization in brainstem neurons of the pontine and bulbar reticular formation come under discussion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 461–469, July–August, 1986.  相似文献   

4.
We subcutaneously injected 0.5 mg/kg veratrine into the musk shrew (Suncus murinus), observed the presence or absence, latency, and the incidence of vomiting in each animal for 90 min, and selected animals that frequently vomited (FV group) and those that did not vomit (NV group). Subsequently, animal brains were removed, and the induction of c-fos protein (Fos) was immunohistochemically examined to evaluate neuronal activity in the medulla oblongata. The distribution of Fos-positive neurons in the medulla oblongata was similar between FV and NV groups, with numerous neurons along the entire length of the nucleus of the solitary tract and in the ventrolateral reticular formation. Both veratrine-injected groups showed higher numbers of positive neurons than the saline administered group. However, while the FV group showed a high concentration of positive neurons in the dorsal-dorsomedial reticular formation of the nucleus ambiguus in the rostral medulla, the NV group showed few positive neurons in this area. Fos activity in neurons in this area appeared to be higher in animals with a higher incidence of vomiting.  相似文献   

5.
The brainstem reticular formation has been studied in 16 genera representing 11 families of reptiles. Measurements of Nissl-stained reticular neurons revealed that they are distributed along a continuum, ranging in length from 10 μm to 95 μm. Reticular neurons in crocodilians and snakes tend to be larger than those found in lizards and turtles. Golgi studies revealed that reticular neurons posess long, rectilinear, sparsely branching dendrites. Small reticular neurons ( > 31 μm length) possess fusiform or triangular somata which bear two or three primary dendrites. These dendrites have a somewhat simpler ramification pattern when compared with those of large reticular neurons (< 30 μm length). Large reticular neurons generally possess perikarya which are triangular or polygonal in shape. The somata of large reticular neurons bear an average of four primary dendrites. The dendrites of reptilian reticular neurons ramify predominantly in the transverse plane and are devoid of spines or excrescences. The dendritic ramification patterns observed in the various repitilian reticular nuclei were correlated with known input and output connections of these nuclei. Nissl and Golgi techniques were used to divide the reticular formation into seven nuclei. A nucleus reticularis inferior (RI) is found in the myelencephalon, a reticularis medius (RM) in the caudal two-thirds of the metencephalon, and a reticularis superior (RS) in the rostral metencephalon and caudal mesencephalon. Reticularis inferior can be subdivided into a dorsal portion (RID) and a ventral portion (RIV). All reptilian groups possess RID and RM but RIV is lacking in turtles. Reticularis superior can be subdivided into a large-celled lateral portion (RSL) and a small-celled medial portion (RSM). All reptilian groups possess RSM and RSL, but RSL is quite variable in appearance, being best developed in snakes and crocodilians. The myelencephalic raphe nucleus is also quite variable in its morphology among the different reptilian families. A seventh reticular nucleus, reticularis ventrolateralis (RVL), is found only in snakes and in teiid lizards. It was noted that the reticular formation is simpler (fewer numbers of nuclei) in the representatives of older reptilian lineages and more complex (greater numbers of nuclei) in the more modern lineages. Certain reticular nuclei are present or more extensive in those families which have prominent axial musculature.  相似文献   

6.
M Kihara  T Kubo 《Histochemistry》1989,91(4):309-314
Localization of gamma-aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

7.
Using a histochemical technique, we examined distribution of the neurons containing a marker of nitric oxide synthase (NOS), NADPH-diaphorase (NADPH-d), on frontal slices of the medulla and upper cervical spinal segments of 4-day-old rats. It was demonstrated that NADPH-d-positive cells are present within the dorsal and ventral medullary respiratory groups. The highest density of the labeled middle-size multipolar neurons (27.9±2.6 cells per 0.1 mm2 of the slice) was observed in the rostral part of the ventral respiratory group, within the reticular lateral paragigantocellular nucleus. Similar NADPH-d-positive neurons were also observed in other reticular formation structures: rostroventrolateral reticular, gigantocellular, and ventral medullary nuclei, and in the ventral part of the paramedial nucleus. There were no labeled neurons in the lateral reticular nucleus. Single small and medium-size labeled neurons were found at all rostro-caudal levels of thenucl. ambiguous (nuclei retrofacialis, ambiguous, andretroam-biguous). Groups of NADPH-d-positive neurons were also revealed within the dorsal respiratory group, along the whole length of thenucl. tractus solitarii (mostly in its ventrolateral parts). Single labeled neurons were also observed in thenucl. n. hypoglossi, and their groups were observed in the dorsal motor part of thenucl. n. vagus. Involvement of the structures containing NADPH-d-positive neurons in the processes related to generation of the respiratory activity is discussed. Our neuroanatomical experiments prove that in early postnatal mammals NO is actively involved in generation and regulation of the medullary respiratory rhythm. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 128–136, March–April, 2000.  相似文献   

8.
用免疫组化 ABC 技术,观察了八肽缩胆囊素(CCK—8),甲硫氨酸脑啡肽(M—ENK)免疫反应(IR)结构在猫延髓吻侧腹侧区的分布。结果表明:CCK—8—IR 细胞分内、外两群:内侧群细胞分布于巨细胞网状核(NGc)、旁巨细胞外侧核(PGL)以及下橄榄核背外侧的网状结构,从吻侧向尾侧逐渐减少;外侧群细胞分布于外侧网状核(LRN)及其背内侧网状结构,从吻侧向尾侧逐渐增多。在中缝苍白核(Rpa)、中缝大核(Rm)仅见少量 CCK—8—IR 细胞。察见 CCK—8—IR纤维主要有3种:粗、细和终末前纤维。CCK—8—IR 纤维在面后核、疑核以及二核紧邻的网状结构最为密集;在 PGL 密度中等;在 NGc、LRN、Rpa 和 Rm 稀疏分布。M—ENK—IR 细胞和纤维分布于 Rpa、Rm、NGc、PGL 和 LRN,此外在面后核、疑核以及二核紧邻的网状结构可见较密集的纤维。  相似文献   

9.
研究用荧光金(FG)逆行追踪与免疫荧光组化染色相结合的双标技术对大鼠脑干向延髓网状背侧亚核(SRD)的5┐羟色胺(5┐HT)能、P物质(SP)能和亮氨酸┐脑啡肽(L┐ENK)能投射进行了观察。将FG注入SRD后,FG逆标神经元主要见于中脑导水管周围灰质、脑干中缝核簇(中缝背核、中缝正中核、中缝桥核、中缝大核、中缝隐核和中缝苍白核)、巨细胞网状核α部、延髓网状结构的内侧部和外侧部、延髓外侧网状核、三叉神经脊束核尾侧亚核和孤束核。5┐羟色胺(5┐HT)样、P物质(SP)样和亮氨酸脑啡肽(L┐ENK)样阳性神经元主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部;此外,SP样和L┐ENK样阳性神经元还见于臂旁核、背外侧被盖核和孤束核。FG逆标并呈5┐HT样、SP样或L┐ENK样阳性的双标神经元也主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,尤其是位于延髓中缝核团内的双标神经元数量较多。本研究的结果说明SRD内的5┐HT样、SP样和L┐ENK样阳性终末主要来自中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,向SRD发出5┐HT能、SP能和L┐ENK能投射的上述核团对SRD发挥“弥漫性伤害抑  相似文献   

10.
K M Knigge  D T Piekut 《Peptides》1985,6(1):97-101
The distribution of CRF and tyrosine hydroxylase (TH)-immunoreactive neurons was examined in the brainstem of the chicken. Very dense populations of both CRF and TH-immunoreactive (-ir) perikarya are co-extensive in separate neuronal systems throughout a large field of the rostral brainstem, encompassing locus ceruleus, the mesencephalic reticular formation, parabrachial nucleus, and the dorsal and ventral tegmental areas. They are present also in nucleus tractus solitarius, and sparsely in the ventral and lateral areas of the medulla. This co-distribution suggests that the effects of CRF upon central autonomic activity may be mediated via brainstem catecholamine systems. CRF-ir neurons alone are present also in midline nuclei, including n. centralis superior, n.annularis, n.linearis caudalis, and the raphe.  相似文献   

11.
Utilizing cyto-, myelo-, and chemoarchitecture as well as connectional criteria, the present study reveals the interstitial system of the spinal trigeminal tract (InSy-SVT) in the rat to be composed of five morphologically and functionally distinct components that are distributed within spatially restricted regions of the lateral medulla. The first component is represented by scattered interstitial cells and neuropil, which extend laterally into SVT from the superficial laminae of the medullary dorsal horn (MDH). The second component, the dorsal paramarginal nucleus (PaMd), consists of a small group of marginal (lamina I)-like neurons and neuropil situated within the dorsolateral part of SVT at the rostral pole of MDH. The third component represents a trigeminal extension of the parvocellular reticular formation (V-Rpc) into the ventromedial aspect of SVT at levels extending from rostral MDH to the caudal part of trigeminal nucleus interpolaris (Vi). The fourth component, the paratrigeminal nucleus (PaV), consists of a large accumulation of neurons and neuropil situated within the dorsal part of SVT throughout the caudal half of Vi. The fifth component is the insular trigeminal-cuneatus lateralis nucleus (iV-Cul), which is a discontinuous collection of neurons and neuropil interspersed among fibers of SVT as well as wedged between it and the spinocerebellar tract. Thalamic projection neurons are located in PaMd and V-Rpc, whereas cerebellar projecting neurons are confined to iV-Cul.  相似文献   

12.
Utilizing cyto-, myelo-, and chemoarchitecture as well as connectional criteria, the present study reveals the interstitial system of the spinal trigeminal tract (InSy-SVT) in the rat to be composed of five morphologically and functionally distinct components that are distributed within spatially restricted regions of the lateral medulla. The first component is represented by scattered interstitial cells and neuropil, which extend laterally into SVT from the superficial laminae of the medullary dorsal horn (MDH). The second component, the dorsal paramarginal nucleus (PaMd), consists of a small group of marginal (lamina I)-like neurons and neuropil situated within the dorsolateral part of SVT at the rostral pole of MDH. The third component represents a trigeminal extension of the parvocellular reticular formation (V-Rpc) into the ventromedial aspect of SVT at levels extending from rostral MDH to the caudal part of trigeminal nucleus interpolaris (Vi). The fourth component, the paratrigeminal nucleus (PaV), consists of a large accumulation of neurons and neuropil situated within the dorsal part of SVT throughout the caudal half of Vi. The fifth component is the insular trigeminal-cuneatus lateralis nucleus (iV-Cul), which is a discontinuous collection of neurons and neuropil interspersed among fibers of SVT as well as wedged between it and the spinocerebellar tract. Thalamic projection neurons are located in PaMd and V-Rpc, whereas cerebellar projecting neurons are confined to iV-Cul.  相似文献   

13.
Summary Localization of -aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

14.
This study attempts to determine if fibers that project from the guinea pig red nucleus to the spinal cord use L-glutamate and/or L-aspartate as transmitters. Unilateral injections of kainic acid were placed stereotaxically in the red nucleus to destroy the cells of origin of the rubrospinal tract. Six days after the injection, Nissl-stained sections through the lesion site showed that the majority of neurons in the red nucleus ipsilateral to the kainic acid injection were destroyed. In addition, the lesioned area included parts of the surrounding midbrain reticular formation. Silver-impregnated, transverse sections of the cervical spinal cord revealed the presence of degenerating fibers contralaterally in laminae IV-VII of the gray matter. Ipsilaterally, very sparse degeneration was evident in laminae VII and VIII of the gray matter. Two to six days after surgery, the electrically evoked, Ca2(+)-dependent release of both D-[3H]aspartate, a marker for glutamatergic/aspartatergic neurons, and gamma-amino[14C]-butyric acid ([14C]GABA) was measured in dissected quadrants of the spinal cervical enlargement. Lesions centered on the red nucleus depressed the release of D-[3H]aspartate by 25-45% in dorsal and ventral quadrants of the cervical enlargement contralaterally. The release of [14C]GABA was depressed by 27% in contralateral ventral quadrants. To assess the contribution of rubro- versus reticulospinal fibers to the deficits in amino acid release, unilateral injections of kainic acid were placed stereotaxically in the midbrain reticular formation lateral to the red nucleus. Nissl-stained sections through the midbrain revealed the presence of extensive neuronal loss in the midbrain and rostral pontine reticular formation, whereas neurons in the red nucleus remained undamaged. In the spinal cord, degenerating axons were present ipsilaterally in laminae VII and VIII of the gray matter. Some fiber degeneration was also evident contralaterally in laminae V and VI of the gray matter. This lesion did not affect the release of either D-[3H]aspartate or [14C]GABA in the spinal cord. The substantial decrements in D-[3H]aspartate release following red nucleus lesions suggests that the synaptic endings of rubrospinal fibers mediate the release of D-[3H]aspartate in the spinal cord. Therefore, these fibers may be glutamatergic and/or aspartatergic. Because other evidence suggests that rubrospinal neurons are probably not GABAergic, the depression of [14C]GABA release probably reflects changes in the activity of spinal interneurons following the loss of rubrospinal input.  相似文献   

15.
1. The effect of hemisection of the cervical spinal cord on NADPH-diaphorase staining in the reticular nuclei of the rabbit medulla was investigated using histochemical technique.2. A quantitative assessment of somal and neuropil NADPH-diaphorase staining was made by an image analyzer in a selected area of each reticular nucleus of the rabbit medulla.3. On the 7th postsurgery day, the highest up-regulation of somatic NADPH-diapho- rase staining was observed in regions regulating cardiorespiratory processes; however, the highest increase of neuropil NADPH-diaphorase staining was found in the reticular nuclei modulating the tonus of postural muscles.4. The degeneration of non-NADPH-diaphorase-stained neurons was detected throughout the reticular formation of the medulla, but the extent of neuronal death did not correlate with the up-regulation of the NADPH-diaphorase staining in the reticular nuclei of the medulla.5. The findings provide evidence that NADPH-diaphorase-exhibiting neurons are refractory to the hemisection of the cervical spinal cord and that the neuronal up-regulation of NADPH-diaphorase at the medullar level is probably not a causative factor leading to the death of the reticulospinal neurons.  相似文献   

16.
The localization of cholinergic neurons in the cat lower brain stem was determined immunocytochemically with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. ChAT-positive neurons were observed in four major cell groups: cranial nerve motor and special visceromotor neurons: parasympathetic preganglionic visceromotor neurons; neurons located in the ponto-mesencephalic tegmentum including area X (or pedunculopontine tegmental nucleus), nucleus laterodorsalis tegmenti (Ldt) of Castaldi, and peri-locus coeruleus alpha (peri-alpha); and neurons located in nucleus reticularis magnocellularis (Mc) and adjacent nucleus reticularis gigantocellularis (Gc) of the medulla.  相似文献   

17.
Local injection of substance P (SP) into the ventral portion of the nucleus gigantocellularis, nucleus reticularis lateralis, and nucleus retrofacialis of the ventrolateral medulla oblongata (VLM) or direct application on the ventral surface of the medulla oblongata caused marked stimulation of tidal volume (VT) and/or minute ventilation (VE). The ventilatory response to hypoxia was significantly blunted after SP in the VLM but not in the dorsal medulla oblongata (DM) (nucleus tractus solitarius). The SP antagonist [D-Pro2,D-Trp7,9]SP almost completely inhibited this response when applied locally to a wide area of the superficial layer of the VLM but not of the DM. Unilateral or bilateral application of 0.3-1.5 nmol of the SP antagonist in the VLM (corpus trapezoideum and the caudal region extending from the rootlets of the nucleus hypoglossus to the first cervical segment) markedly attenuated the response to a 5% CO2 inhalation. The inhibition of the CO2 response was seen after [D-Pro2,D-Trp7,9]SP in the rostral areas of the medulla oblongata corresponding to the corpus trapezoideum and the caudal region extending from the rootlets of the nucleus hypoglossus to the first cervical segment of the cervical cord. Electric somatosensory-induced ventilatory stimulation could be depressed by approximately 70% by [D-Pro2,D-Trp7,9]SP locally applied on the surface of the VLM. We conclude that SP is involved in the hypoxic, hypercapnic, and somatosensory ventilatory responses in the rat. However, these respiratory reflexes are mediated via different neuronal pools in the medulla oblongata, mainly the VLM.  相似文献   

18.
Stimulation of the sphenopalatine ganglion (SPG), a parasympathetic ganglion of the facial nerve, or the dorsal facial area (DFA), an area in the lateral tegmental field just dorsal to the facial nucleus, induces an increase in blood flow of the common carotid artery (CCA). This study attempted to clarify the anatomical and functional relationships between the SPG and the DFA, and to demonstrate putative serotonergic (5-HT) and substance P (SP) innervations to the neurons of the DFA in regulation of the CCA blood flow in cats. Horseradish peroxidase (HRP), a retrograde tracer, was injected in the SPG. All HRP-labeled neurons were distributed in the reticular areas dorsal and lateral to the superior olivary nucleus and the facial nucleus, extending from the caudal half of the superior olivary nucleus to the rostral 3/4 of the facial nucleus on the HRP-injected side. They were grouped into five clusters, namely lateral circumference of the superior olivary nucleus, dorsal circumference of the superior olivary nucleus, lateral circumference of the facial nucleus, dorsal circumference of the facial nucleus, and the DFA. The percentage of HRP-neurons in each cluster was 0.5 +/- 0.1% (mean +/- S.E., n=6), 15.2 +/- 1.9%, 23.7 +/- 0.9%, 52.5 +/- 1.7%, and 8.3 +/- 0.7%, respectively. Glutamate stimulation of the DFA (at 5.0 to 7.0 mm rostral to the obex, 2.8 to 4.0 mm lateral to the midline, and 2.5 to 3.5 mm ventral to the dorsal surface of the medulla), but not other areas, resulted in the increased CCA blood flow. The 5HT- and SP-immunoreactive nerve terminals abutted on the ChAT-immunoreactive cell body (preganglionic neurons) in the DFA. In conclusion, parasympathetic preganglionic neurons in the DFA project fibers to the SPG, are innervated by 5HT- and SP-like nerve terminals, and are responsible for regulation of the CCA blood flow. They may be also important in regulation of the cerebral blood flow.  相似文献   

19.
Unit responses of the nuclei pontis (NP) and reticular pontine nuclei (RPN) to stimulation of the frontobasal cortex (proreal, orbital, and basal temporal regions) and of the dorsal hippocampus were studied in cats. Stimulation of the various cortical structures was found to induce phasic and (less frequently) tonic responses in neurons of NP and RPN. The main type of unit response in RPN was primary excitation, whereas in NP it was primary inhibition. The largest number of responding neurons in the pontine nuclei was observed to stimulation of the proreal gyrus. In the cerebro-cerebellar relay system neurons of the reticular tegmental nucleus and ventromedial portion of NP showed the highest ability to respond. In the oral and caudal reticular pontine nuclei the regions of predominant influence of cortical structures were located in zones of these nuclei where neurons with rostral and (to a lesser degree) caudal projections were situated.M. Gorkii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 358–367, July–August, 1980.  相似文献   

20.
The Met-enkephalin contents in the dorsal horn of the lumbar enlargement and the nucleus reticularis gigantocellularis of the medulla oblongata of the rat were measured, using a sensitive and specific radioimmunoassay for Met-enkephalin, and the effects of morphine and noxious stimuli on the Met-enkephalin contents in these regions were examined. In this radioimmunoassay, the IC50 and assayable limits for Met-enkephalin were 45 and 5 fmol/tube respectively, and the IC50 for Leuenkephalin was 0.56 nmol/tube (0.008% cross reactivity between Met- and Leu-enkephalins). The contents of Met-enkephalin-like immunoreactivity in the dorsal horn of the lumbar enlargement and the nucleus reticularis gigantocellularis were not altered by either subcutaneous injection of morphine or thermal (hot plate) and chemical (formalin injection) noxious stimuli applied to the hind-paws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号