首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer''s and Parkinson''s diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders.  相似文献   

2.
Microglia are the 'immune cells' of the brain and their activation plays a vital role in the pathogenesis of many neurodegenerative diseases. Activated microglia produce high levels of pro-inflammatory factors, such as TNFα, causing neurotoxicity. Here we show that vimentin played a key role in controlling microglia activation and neurotoxicity during cerebral ischemia. Deletion of vimentin expression significantly impaired microglia activation in response to LPS in vitro and transient focal cerebral ischemia in vivo. Reintroduction of the functional vimentin gene back into vimentin knockout microglia restored their response to LPS. More importantly, impairment of microglia activation significantly protected brain from cerebral ischemia-induced neurotoxicity. Collectively, we demonstrate a previously unknown function of vimentin in controlling microglia activation.  相似文献   

3.
《Journal of molecular biology》2019,431(9):1818-1829
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with clear similarities regarding their clinical, genetic and pathological features. Both are progressive, lethal disorders, with no current curative treatment available. Several genes that correlated with ALS and FTD are implicated in the same molecular pathways. Strikingly, many of these genes are not exclusively expressed in neurons, but also in glial cells, suggesting a multicellular pathogenesis. Moreover, chronic inflammation is a common feature observed in ALS and FTD, indicating an essential role of microglia, the resident immune cells of the central nervous system, in disease development and progression. In this review, we will provide a comprehensive overview of the implications of microglia in ALS and FTD. Specifically, we will focus on the role of impaired phagocytosis and increased inflammatory responses and their impact on microglial function. Several genes associated with the disorders can directly be linked to microglial activation, phagocytosis and neuroinflammation. Other genes associated with the disorders are implicated in biological pathways involved in protein degradation and autophagy. In general such mutations have been shown to cause abnormal protein accumulation and impaired autophagy. These impairments have previously been linked to affect the innate immune system in the central nervous system through inappropriate activation of microglia and neuroinflammation, highlighted in this review. Although it has been well established that microglia play essential roles in neurodegenerative disorders, the precise underlying mechanisms remain to be elucidated.  相似文献   

4.
5.
Neurotoxicity of microglial cathepsin D revealed by secretome analysis   总被引:2,自引:0,他引:2  
Kim S  Ock J  Kim AK  Lee HW  Cho JY  Kim DR  Park JY  Suk K 《Journal of neurochemistry》2007,103(6):2640-2650
Microglia-driven inflammatory responses have both neuroprotective and neurotoxic effects in the CNS. The excessive and chronic activation of microglia, however, may shift the balance towards neurotoxic effects. In this regard, proteins secreted from activated microglia likely play a key role in the neurotoxic effects. To characterize secreted proteins of activated microglia, conditioned media obtained from BV-2 mouse microglia cells were analyzed by two-dimensional gel electrophoresis or liquid chromatography coupled with tandem mass spectrometry. Among many proteins identified in the secretome of activated microglia, an aspartic endoprotease cathepsin D has been found to mediate microglial neurotoxicity based on the following results: (i) the expression of cathepsin D protein was markedly increased in lipopolysaccharide/interferon-γ-stimulated microglia compared with resting microglia as determined by western blot analysis of conditioned media; (ii) knockdown of cathepsin D expression in microglia using short hairpin RNA diminished the neurotoxicity in the coculture of microglia and neuroblastoma cells and (iii) recombinant procathepsin D protein exerted cytotoxic effects toward cultured neurons. In conclusion, cathepsin D appears to play a central role in the microglial neurotoxicity, and could be a potential biomarker or drug target for the diagnosis and treatment of neurodegenerative diseases that are associated with excessive microglial activation and subsequent neurotoxic inflammation.  相似文献   

6.
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.  相似文献   

7.
Microglia are present in an activated state in multiple sclerosis lesions. Incubation of primary cultured rat microglia with rat-brain derived myelin (0.1–1 μg/mL) for 24 h induced microglial activation; cells displayed enhanced ED1 staining, expression of inducible nitric oxide synthase, production and release of the cytokine tumour necrosis factor-α and glutamate release. Exposure of microglia to myelin induced the expression of neuronal caspases and ultimately neuronal death in cultured cerebellar granule cell neurons; neurotoxicity was directly because of microglial-derived soluble toxins. Co-incubation of microglia with agonists or antagonists of different metabotropic glutamate receptor (mGluR) subtypes ameliorated microglial neurotoxicity by inhibiting soluble neurotoxin production. Activation of microglial mGluR2 exacerbated myelin-evoked neurotoxicity whilst activation of mGluR3 was protective as was activation of group III mGluRs. These data show that myelin-induced microglial neurotoxicity can be prevented by regulation of mGluRs and suggest these receptors on microglia may be promising targets for therapeutic intervention in multiple sclerosis.  相似文献   

8.
Microglia activation plays an important role in neuroinflammation and contributes to several neurological disorders. Hence, inhibition of both microglia activation and pro-inflammatory cytokines may lead to the effective treatment of neurodegenerative diseases. In this study, we found that GRh2 inhibited the inflammatory response to lipopolysaccharide (LPS) and prevented the LPS-induced neurotoxicity in microglia cells. GRh2 significantly decreased the generation of nitric oxide production, and tumor necrosis factor-α, interleukin (IL)-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase in LPS-induced activated microglia cells. Furthermore, GRh2 (20 and 50 μM) significantly increased TGF-β1 expression and reduced the expression of Smad. These results suggest that GRh2 effectively inhibits microglia activation and production of pro-inflammatory cytokines via modulating the TGF-β1/Smad pathway.  相似文献   

9.
Glutamate receptor-mediated excitatory neurotransmission plays a key role in neural development, differentiation and synaptic plasticity. However, excessive stimulation of glutamate receptors induces neurotoxicity, a process that has been defined as excitotoxicity. Excitotoxicity is considered to be a major mechanism of cell death in a number of central nervous system diseases including stroke, brain trauma, epilepsy and chronic neurodegenerative disorders. Unfortunately clinical trials with glutamate receptor antagonists, that would logically prevent the effects of excessive receptor activation, have been associated with untoward side effects or little clinical benefit. Therefore, uncovering molecular pathways involved in excitotoxic neuronal death is of critical importance to future development of clinical treatment of many neurodegenerative disorders where excitotoxicity has been implicated. This review discusses the current understanding of the molecular and cellular mechanisms of excitotoxicity and their roles in the pathogenesis of diseases of the central nervous system.  相似文献   

10.
Caspases (cysteine-dependent aspartyl-specific protease) belong to a family of cysteine proteases that mediate proteolytic events indispensable for biological phenomena such as cell death and inflammation. The first caspase was identified as an executioner of apoptotic cell death in the worm Caenorhabditis elegans . Additionally, a large number of caspases have been identified in various animals from sponges to vertebrates. Caspases are thought to play a pivotal role in apoptosis as an evolutionarily conserved function; however, the number of caspases that can be identified is distinct for each species. This indicates that species-specific functions or diversification of physiological roles has been cultivated through caspase evolution. Furthermore, recent studies suggest that caspases are also involved in inflammation and cellular differentiation in mammals. This review highlights vertebrate caspases in their universal and divergent functions and provides insight into the physiological roles of these molecules in animals.  相似文献   

11.
Microglia-mediated neurotoxicity: uncovering the molecular mechanisms   总被引:4,自引:0,他引:4  
Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.  相似文献   

12.
《Journal of molecular biology》2019,431(9):1830-1842
The high energetic demand of the brain deems this organ rather sensitive to changes in energy supply. Therefore, even minor alterations in energy metabolism may underlie detrimental disturbances in brain function, contributing to the generation and progression of neurodegenerative diseases. Considerable evidence supports the key role of deficits in cerebral energy metabolism, particularly hypometabolism of glucose and mitochondrial dysfunction, in the pathophysiology of brain disorders. Major breakthroughs in the field of bioenergetics and neurodegeneration have been achieved through the use of in vitro and in vivo models of disease as well as sophisticated neuroimaging techniques in patients, yet these have been mainly focused on neuron and astrocyte function. Remarkably, the subcellular metabolic mechanisms linked to neurodegeneration that operate in other crucial brain cell types such as microglia have remain obscured, although they are beginning to be unraveled. Microglia, the brain-resident immune sentinels, perform a diverse range of functions that require a high-energy expenditure, namely, their role in brain development, maintenance of the neural environment, response to injury and infection, and activation of repair programs. Interestingly, another key mechanism underlying several neurodegenerative diseases is neuroinflammation, which can be associated with chronic microglia activation. Considering that many brain disorders are accompanied by changes in brain energy metabolism and sustained inflammation, and that energy metabolism has a strong influence on the inflammatory responses of microglia, the emerging significance of microglial energy metabolism in neurodegeneration is highlighted in this review.  相似文献   

13.

Cysteine proteases, caspases, play an important role in the process of programmed cell death. In apoptosis, the cell signaling pathways overlap at executioner caspases regardless of the initial stimulus. Caspase-3 is the key one. This review considers the sensors for activity of caspase-3 and some other caspases. Over the past decade, many such sensors utilizing a variety of detection principles have been created; fluorescence and luminescence are the most common detection methods. The intracellular sensors are of particular interest; they allow visualization of the activation of caspases in living systems. Herein, we briefly describe sensors of various designs, the advantages and disadvantages of which must be taken into account when choosing a sensor for a particular experimental system.

  相似文献   

14.
Caspases are a family of cysteine proteases that are expressed as inactive zymogens and undergo proteolytic maturation in a sequential manner in which initiator caspases cleave and activate the effector caspases 3, 6 and 7. Effector caspases cleave structural proteins, signaling molecules, DNA repair enzymes and proteins which inhibit apoptosis. Activation of effector, or executioner, caspases has historically been viewed as a terminal event in the process of programmed cell death. Emerging evidence now suggests a broader role for activated caspases in cellular maturation, differentiation and other non-lethal events. The importance of activated caspases in normal cell development and signaling has recently been extended to the CNS where these proteases have been shown to contribute to axon guidance, synaptic plasticity and neuroprotection. This review will focus on the adaptive roles activated caspases in maintaining viability, the mechanisms by which caspases are held in check so as not produce apoptotic cell death and the ramifications of these observations in the treatment of neurological disorders.  相似文献   

15.
Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.  相似文献   

16.
Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson''s disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action.  相似文献   

17.
Microglia, the resident mononuclear phagocyte population in the brain, have long been implicated in the pathology of neurodegenerative age-associated disorders. However, activated microglia have now been identified as homeostatic keepers in the brain, because they are involved in the initiation and resolution of neuropathology. The complex roles of activated microglia appear to be linked to change from inflammatory and neurotoxic to anti-inflammatory and neuroprotective phenotypes. Increased expression and secretion of various cathepsins support roles of activated microglia in chronic neuroinflammation, the neurotoxic M1-like polarization and neuronal death. Moreover, changes in expression and localization of microglial cathepsin B play a critical role in the acceleration of the brain aging. Beyond the role as brain-resident macrophages, many lines of evidence have shown that microglia have essential roles in the maturation and maintenance of neuronal circuits in the developing and adult brain. Cathepsin S secreted from microglia induces the diurnal variation of spine density of cortical neurons though proteolytic modification of peri-synaptic extracellular matrix molecules. In this review, I highlight the emerging roles of cathepsins that support the roles of microglia in both normal healthy and pathological brains. In addition, I discuss cathepsin inhibitors as potential therapeutic targets for brain disorders.  相似文献   

18.
Caspase-mediated apoptosis has important roles in normal cell differentiation and aging and in many diseases including cancer, neuromuscular disorders and neurodegenerative diseases. Therefore, modulation of caspase activity and conformational states is of therapeutic importance. We report crystal structures of a new unliganded conformation of caspase-7 and the inhibited caspase-7 with the tetrapeptide Ac-YVAD-Cho. Different conformational states and mechanisms for substrate recognition have been proposed based on unliganded structures of the redundant apoptotic executioner caspase-3 and -7. The current study shows that the executioner caspase-3 and -7 have similar conformations for the unliganded active site as well as the inhibitor-bound active site. The new unliganded caspase-7 structure exhibits the tyrosine flipping mechanism in which the Tyr230 has rotated to block entry to the S2 binding site similar to the active site conformation of unliganded caspase-3. The inhibited structure of caspase-7/YVAD shows that the P4 Tyr binds the S4 region specific to polar residues at the expense of a main chain hydrogen bond between the P4 amide and carbonyl oxygen of caspase-7 Gln 276, which is similar to the caspase-3 complex. This new knowledge of the structures and conformational states of unliganded and inhibited caspases will be important for the design of drugs to modulate caspase activity and apoptosis.  相似文献   

19.
20.
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号