首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen delivery in many animals is enabled by the formation of unicellular capillary tubes that penetrate target tissues to facilitate gas exchange. We show that the tortuous outgrowth of tracheal unicellular branches towards their target tissues is controlled by complex local interactions with target cells. Slit, a phylogenetically conserved axonal guidance signal, is expressed in several tracheal targets and is required both for attraction and repulsion of tracheal branches. Robo and Robo2 are expressed in different branches, and are both necessary for the correct orientation of branch outgrowth. At the CNS midline, Slit functions as a repellent for tracheal branches and this function is mediated primarily by Robo. Robo2 is necessary for the tracheal response to the attractive Slit signal and its function is antagonized by Robo. We propose that the attractive and repulsive tracheal responses to Slit are mediated by different combinations of Robo and Robo2 receptors on the cell surface.  相似文献   

2.
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.  相似文献   

3.
abstract

The objective of this study was to investigate whether human placental multipotent mesenchymal stromal cell (hPMSC)-derived Slit2 and endothelial cell Roundabout (Robo) receptors are involved in placental angiogenesis. The hPMSC-conditioned medium and human umbilical vein endothelial cells were studied for Slit2 and Robo receptor expression by immunoassay and RT-PCR. The effect of the conditioned medium of hPMSCs with or without Slit2 depletion on endothelial cells was investigated by in vitro angiogenesis using growth factor-reduced Matrigel. hPMSCs express Slit2 and both Robo1 and Robo4 are present in human umbilical vein endothelial cells. Human umbilical vein endothelial cells do not express Robo2 and Robo3. The hPMSC-conditioned medium and Slit2 recombinant protein significantly inhibit the endothelial cell migration, but not by the hPMSC-conditioned medium with Slit2 depletion. The hPMSC-conditioned medium and Slit2 significantly enhance endothelial tube formation with increased cumulated tube length, polygonal network number and vessel branching point number compared to endothelial cells alone. The tube formation is inhibited by the depletion of Slit2 from the conditioned medium, or following the expression of Robo1, Robo4, and both receptor knockdown using small interfering RNA. Furthermore, co-immunoprecipitation reveals Slit2 binds to Robo1 and Robo4. Robo1 interacts and forms a heterodimeric complex with Robo4. These results suggest the implication of both Robo receptors with Slit2 signaling, which is involved in endothelial cell angiogenesis. Slit2 in the conditioned medium of hPMSCs has functional effect on endothelial cells and may play a role in placental angiogenesis.  相似文献   

4.
Qian L  Liu J  Bodmer R 《Current biology : CB》2005,15(24):2271-2278
Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.  相似文献   

5.
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.  相似文献   

6.
Retinoic acid syndrome (RAS) is a serious complication developed during the induction therapy of acute promyelocytic leukemia (APL). Cytokines and differentiated cells migration play important roles in the development of RAS. Slit guidance ligand 2 (Slit2) and roundabout 1 (Robo1) involve in cell migration. Our study aimed to investigate the expression of Slit2 and Robo1 in APL and check whether they affected promyelocytes migration. 62 cases of newly diagnosed APL patients were involved and received all-trans retinoic acid (ATRA) and arsenic trioxide as induction therapy. Bone marrow cells (BMCs) were obtained on days 0 and 28, and promyelocytes and plasma were collected from day 1 to day 21. The expression of Robo1 in promyelocytes, and that of Slit2 and cytokines, including IL-8,IL-1β and others, in serum were monitored. 20 healthy individuals donated their cells as control. Of the 62 APL patients, 16 (25.81%) patients developed RAS. The expression of Robo1, Slit2 and IL-8 increased significantly with the development of RAS. In the 16 patients with RAS, levels of Slit2, Robo1 and IL-8 were higher during the development of RAS than before or after the RAS (P < 0.05). RhSlit2-N and rhIL-8 induced cells migration, and the migration induced by IL-8 was not inhibited by rhSlit2-N. Elevated Slit2 and Robo1 levels might be useful markers for the diagnosis and treatment of RAS. The levels of Slit2, Robo1 and IL-8 showed a positive correlation with the severity of RAS. Slit2 and IL-8 promoted the migration of differentiated cells.  相似文献   

7.
The Slit family of secreted proteins acts through the Roundabout (Robo) receptors to repel axonal migration during central nervous system development. Emerging evidence shows that Slit/Robo interactions also play a role in angiogenesis. The effect of Robo signaling on endothelial cells has been shown to be context-dependent. However, the role of Slit/Robo in pericytes has been largely unexplored. The aim of this study was to determine the effect of Slit2 on primary human pericytes and to address the underlying mechanisms, including the receptors potentially implicated. We demonstrate that both Robo1 and Robo4 are expressed by human pericytes. In the presence of their ligand Slit2, spontaneous and PDGF-induced migration of pericytes was impaired. This antimigratory activity of Slit-2 correlated with the inhibition of actin-based protrusive structures. Interestingly, human pericyte interaction with immobilized Slit2 was inhibited in the presence of anti-Robo1 and anti-Robo4 blocking antibodies, suggesting the implication of both receptors. These results add new insights into the role of Slit proteins during the angiogenic process that relies on the directional migration not only of endothelial cells but also of pericytes.  相似文献   

8.
Zhou WJ  Geng ZH  Chi S  Zhang W  Niu XF  Lan SJ  Ma L  Yang X  Wang LJ  Ding YQ  Geng JG 《Cell research》2011,21(4):609-626
The Slit family of guidance cues binds to Roundabout (Robo) receptors and modulates cell migration. We report here that ectopic expression of Slit2 and Robo1 or recombinant Slit2 treatment of Robo1-expressing colorectal epithelial carcinoma cells recruited an ubiquitin ligase Hakai for E-cadherin (E-cad) ubiquitination and lysosomal degradation, epithelial-mesenchymal transition (EMT), and tumor growth and liver metastasis, which were rescued by knockdown of Hakai. In contrast, knockdown of endogenous Robo1 or specific blockade of Slit2 binding to Robo1 prevented E-cad degradation and reversed EMT, resulting in diminished tumor growth and liver metastasis. Ectopic expression of Robo1 also triggered a malignant transformation in Slit2-positive human embryonic kidney 293 cells. Importantly, the expression of Slit2 and Robo1 was significantly associated with an increased metastatic risk and poorer overall survival in colorectal carcinoma patients. We conclude that engagement of Robo1 by Slit2 induces malignant transformation through Hakai-mediated E-cad ubiquitination and lysosomal degradation during colorectal epithelial cell carcinogenesis.  相似文献   

9.
Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system, showing that it provides long-range activity beyond the limit of the developing CNS. Biochemical studies suggest that guidance activity requires cell-surface heparan sulfate to promote binding of mammalian Slit/Robo homologs. Here, we report that the Drosophila homolog of Syndecan (reviewed in ), a heparan sulfate proteoglycan (HSPG), is required for proper Slit signaling. We generated syndecan (sdc) mutations and show that they affect all aspects of Slit activity and cause robo-like phenotypes. sdc interacts genetically with robo and slit, and double mutations cause a synergistic strengthening of the single-mutant phenotypes. The results suggest that Syndecan is a necessary component of Slit/Robo signaling and is required in the Slit target cells.  相似文献   

10.
The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.  相似文献   

11.
Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon’s cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.  相似文献   

12.
The Slit family of guidance cues binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit-Robo signaling had been reported to function as chemoattractive signal for vascular endothelial cells during angiogenesis. In this study, we found that Robo1 was expressed in lymphatic endothelial cells to mediate the migration and tube formation of these cells upon Slit2 stimulation, which were specifically inhibited by the function-blocking antibody R5 to Slit2/Robo1 interaction. To further explore the lymphangiogenic effect and significance mediated by Slit-Robo signaling, we intercrossed Slit2 transgenic mice with a non-metastatic RIP1-Tag2 mouse tumor model, and found that transgenic overexpression of Slit2 significantly enhanced tumor lymphangiogenesis and subsequently promoted mesenteric lymph node metastasis of pancreatic islet tumors. Taken together, our findings reveal that through interacting with Robo1, Slit2 is a novel and potent lymphangiogenic factor and contributes to tumor lymphatic metastasis.  相似文献   

13.
Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit–Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4–heparan sulphate binding contributes to a Slit–Robo signalling mechanism more intricate than previously thought.  相似文献   

14.
Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.  相似文献   

15.
Directional migration is an essential step for monocytes to infiltrate sites of inflammation, a process primarily regulated by chemoattractants. Slits are large matrix proteins that are secreted by endothelial cells; they were reported to inhibit the chemoattractant-induced migration of different cell types, including leukocytes. The aim of this study was to determine the effect of Slit3 on primary monocyte migration and to address the underlying mechanisms. We show that Roundabout (Robo)1, one of the Robo receptors that recognize Slit3, is the only Robo homolog expressed by CD14(+) monocytes. Interestingly, we found that stimulation with Slit3 increased the spontaneous and chemoattractant-induced migration of primary monocytes in vitro and increased the myeloid cell recruitment during peritoneal inflammation in vivo. In addition, Slit3 did not seem to act as a chemoattractant itself; it promoted directed migration triggered by chemoattractants, such as CXCL12, by inducing a chemokinetic effect. We further show that Slit3 prevented monocyte spreading and induced rounding of spread monocytes without affecting monocyte adhesion. Stimulation with Slit3 was not associated with changes in the levels of phosphorylated p38, p42/p44, or Src, known regulators of monocyte migration, but it directly acts on molecular pathways involved in basal leukocyte migration by activating RhoA. These findings show an unexpected response of monocytes to Slit3 and add insights into the possible role of Slit proteins during inflammatory cell recruitment.  相似文献   

16.
The tubular epithelium of the Drosophila tracheal system forms a network with a stereotyped pattern consisting of cells and branches with distinct identity. The tracheal primordium undergoes primary branching induced by the FGF homolog Branchless, differentiates cells with specialized functions such as fusion cells, which perform target recognition and adhesion during branch fusion, and extends branches toward specific targets. Specification of a unique identity for each primary branch is essential for directed migration, as a defect in either the EGFR or the Dpp pathway leads to a loss of branch identity and the misguidance of tracheal cell migration. Here, we investigate the role of Wingless signaling in the specification of cell and branch identity in the tracheal system. Wingless and its intracellular signal transducer, Armadillo, have multiple functions, including specifying the dorsal trunk through activation of Spalt expression and inducing differentiation of fusion cells in all fusion branches. Moreover, we show that Wingless signaling regulates Notch signaling by stimulating delta expression at the tip of primary branches. These activities of Wingless signaling together specify the shape of the dorsal trunk and other fusion branches.  相似文献   

17.
Elly Ordan  Talila Volk 《Fly》2015,9(2):82-85
The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles.  相似文献   

18.
Neural crest cells migrate along two discrete pathways within the trunk of developing embryos. In the chick, early migrating crest cells are confined to a ventral pathway medial to the dermamyotome while later cells migrate on a dorsal pathway lateral to the dermamyotome. Here we show that Slits are expressed in the dermamyotome, that early migrating crest cells express the Slit receptors Robo 1 and Robo 2, that Slit2 repels migrating crest cells in an in vitro assay, and that the misexpression of a dominant-negative Robo1 receptor induces a significant fraction of early crest cells to migrate ectopically in the dorso-lateral pathway. These findings suggest that Slits, most likely those expressed in the dermamyotome, help to confine the migration of early crest cells to the ventral pathway.  相似文献   

19.
《Fly》2013,7(2):82-85
The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles.  相似文献   

20.
Maintenance of bilateral symmetry throughout animal development requires that both left and right halves of the body follow nearly identical patterns of cell proliferation, differentiation, death and migration. During formation of the perfectly bilateral Drosophila larval peripheral nervous system (PNS), the sensory precursor cells of the ventral multidendritic neuron vmd1a originating from each hemisegment migrate away from the ventral midline. Our observations indicate that in slit mutant embryos, as well as in robo, robo2 double mutants, sensory precursor cells of the left and right vmd1a neurons aberrantly cluster at the midline and then the pair of vmd1a neurons migrate to their final position on the same side of the embryo. This results in disruption of PNS bilateral symmetry. Expression of slit at the midline rescues the slit mutant vmd1a phenotype, suggesting that midline-secreted Slit activates Robo/Robo2 signalling to control the migration of the vmd1a sensory precursor cells. Our study indicates that midline-secreted Slit prevents vmd1a sensory cells from crossing the midline and thereby maintains PNS bilateral symmetry during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号