首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High activities of extracellular pectinase with viscosity-diminishing and reducing groups-releasing activities were produced by Penicillium frequentans after 48 h at 35°C, in agitated cultures supplemented with 0.5% citrus pectin and initial pH of 2.5. Under these conditions the fungus also produced high activity of pectinesterase. At an initial pH of 7.0 or 8.0, pectin lyase activity was also detected. Enzyme activity releasing reducing sugars was more stable at 50°C than viscosity-diminishing activity. Both activities were maximal at pH 2.5 to 5.2 and at 55°C.The authors are from the Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, Avenida do Café, s/no, Bairro Monte Alegre, 14.049 Ribeirão Preto, S.P., Brazil.  相似文献   

2.
A pectin lyase, poly(methoxygalacturonide) lyase, EC 4.2.2.10, from a culture filtrate of Penicillium expansum was partially purified 33-fold with 7.3% yield. The enzyme was monomeric with a molecular mass of 36.5 kDa. The enzyme did not contain pectate lyase activity and degraded citrus and apple pectin best at pH 7.0 and 40 to 45°C. The K m for citrus pectin was 9 mg ml-1.  相似文献   

3.
A novel halophilic alginate-degrading microorganism was isolated from rotten seaweed and identified as Isoptericola halotolerans CGMCC5336. The lyase from the strain was purified to homogeneity by combining of ammonium sulfate fractionation and anion-exchange chromatography with a specific activity of 8409.19 U/ml and a recovery of 25.07%. This enzyme was a monomer with a molecular mass of approximately 28 kDa. The optimal temperature and pH were 50 °C and pH 7.0, respectively. The lyase maintained stability at neutral pH (7.0–8.0) and temperatures below 50 °C. Metal ions including Na+, Mg2+, Mn2+, and Ca2+ notably increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax were 0.26 mg/ml and 1.31 mg/ml min, respectively. The alginate lyase had substrate specificity for polyguluronate and polymannuronate units in alginate molecules, indicating its bifunctionality. These excellent characteristics demonstrated the potential applications in alginate oligosaccharides production with low polymerisation degrees.  相似文献   

4.
A thermophilic Bacillus stearothermophilus F1 that produced an extremely thermostable alkaline protease was isolated from decomposed oil palm branches. The isolated protease was purified to homogeneity by heat treatment, ultrafiltration and gel filtration chromatography with a 128-fold increase in specific activity and 75% recovery. The protease, which is a serine-type enzyme, has a relative molecular mass of 33 500 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis but only 20 000 by gel-filtration chromatography. The enzyme was optimally active at pH 9.0 and was stable for 24 h at 70° C and in the pH range from 8.0 to 10.0. It was capable of hydrolysing many soluble and insoluble protein substrates but no esterase activity was detected. The enzyme activity was markedly inhibited by Co2+ and Hg2+, whereas Mg2+, Fe2+, Cu2+, Zn2+ and Sr2+ had little or no inhibitory effect. However, Mn2+ strongly activated the protease activity. The protease exhibited a high degree of thermostability [t 1/2 (85° C) = 4 h, (90° C) = 25 min]. The stability at higher temperatures (85° C and above) was shown to be dependent on the presence of Ca2+. Correspondence to: A. B. Salleh  相似文献   

5.
Aspergillus flavus grown in a liquid medium containing pectin as the sole carbon source produced extracellular enzymes which degraded the 1,4-α-d-glycosidic bonds of pectin. The products of degradation were characteristic of substances produced by transeliminase. Synthesis of this enzyme was repressed by the addition of sucrose, glucose, fructose and maltose. The crude enzyme was partially purified by a combination of ultrafiltration and ammonium sulfate precipitation. The partially purified enzyme was separated by molecular exclusion chromatography into three components A, B and C, with molar masses ranging from 13.2 to 64 kDa. Only fraction B exhibited enzymic activity and further fractionated by ion-exchange chromatography into four components I–IV. Among these components, only fractions I and II possessed transeliminase activity. Both fractions had an optimum activity at pH 8.5 and 35°C, and were stimulated by Ca2+, Mg2+, Na+ and K+ but inhibited by EDTA and DNP. The apparentK m for the degradation of pectin by fractions I and II were 6.2 and 8.0 g/L, respectively.  相似文献   

6.
Summary Highest production of xylose Isomerase by Neurospora crassa grown with different carbon sources was at 0.014 U mg-1 with D-xylose. The enzyme exhibited maximum activity at pH 8.0 and 70°C and retained 100% activity at 45°C for 30 min at pH 8.0. It was activated by 8 mM Mg2+ whereas 2 mM Co2+ afforded protection against inactivation by heat. The K m for xylose was 10 mM and 22 mM for xylose Isomerase and xylose reductase respectively at 28°C and pH 7.0. This is the first report on the presence of xylose isomerase in N. crassa and the existence of two different pathways for the utilization of D-xylose.  相似文献   

7.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

8.
Another pectate lyase was purified to a nearly homogeneous state from the culture filtrate of Streptomyces nitrosporeus. The molecular weight was estimated to be about 41,000. Iso-electric point was pH 4.6. The enzyme was most active at pH 10.0 and 50°C, and was relatively stable at a pH range of 4–11 (at 2°C for 48 hr) and below 40°C (at pH 7.0 for 10 min). Ca2+ was required for maximum activity. The enzyme was an endo-pectate lyase which was more active on low methoxyl pectin than on polygalacturonic acid and had macerating activity on potato tissue and Ganpi bark.  相似文献   

9.
The importance of various parameters such as sugarcane juice concentration, pH of the medium, and effects of different solid supports for maximum secretion of pectin lyase from Penicillium citrinum MTCC 8897 has been studied. The enzyme was purified to homogeneity by Sephadex G-100 and DEAE-cellulose chromatography. The molecular mass determined by SDS-PAGE was 31 kDa. The K m and k cat values were found to be 1 mg/ml and 76 sec−1, respectively. The optimum pH of the purified pectin lyase was 9.0, though it retains activity in the pH 9.0–12.0 range when exposed for 24 h. The optimum temperature was 50°C, and the pectin lyase was found to be completely stable up to 40°C when exposed for 1 h. The purified pectin lyase was found efficient in retting of Linum usitatissimum, Cannabis sativa, and Crotalaria juncea. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 985–992.  相似文献   

10.
The present work describes the purification and characterization of a novel extracellular polygalacturonase, PGase I, produced by Pycnoporus sanguineus when grown on citrus fruit pectin. This substrate gave enhanced enzyme production as compared to sucrose and lactose. PGase I is an exocellular enzyme releasing galacturonic acid as its principal hydrolysis product as determined by TLC and orcinol-sulphuric acid staining. Its capacity to hydrolyze digalacturonate identified PGase I as an exo-polygalacturonase. SDS-PAGE showed that PGase I is an N-glycosidated monomer. The enzyme has a molecular mass of 42 kDa, optimum pH 4.8 and stability between pH 3.8 and 8.0. A temperature optimum was observed at 50–60 °C, with some enzyme activity retained up to 80 °C. Its activation energy was 5.352 cal mol−1. PGase I showed a higher affinity towards PGA than citric pectin (Km = 0.55 ± 0.02 and 0.72 ± 0.02 mg ml−1, respectively). Consequently, PGase I is an exo-PGase, EC 3.2.1.82.  相似文献   

11.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

12.
An aminopeptidase was highly purified from a cellular extract ofTreponema phagedenis (Reiter strain) by ammonium sulfate precipitation and successive chromatography on Sepharose 6B, DEAE-Sepharose CL-6B and CM-Sepharose CL-6B. The molecular weight of the enzyme was 74,500. The enzyme was stable in the pH region 5.0–7.0 and up to 50°C. The optimal pH, ionic strength, and temperature were pH 7.9–8.0,I 0.13, and 37°C, respectively. Co2+ was essential for the enzyme activity with an optimal concentration of 0.3 mM, and EDTA and such divalent cations as Hg2+, Cu2+, Zn2+, Pb2+, Sn2+, and Cd2+ were inhibitory against the Co2+-activated enzyme. The enzyme exhibited a preference for hydrophobic residues as well as Arg in the N-terminal position and cleaved in the order of Tyr > Trp > Phe > Leu > Arg > Ala His, Met, and Ser, but did not cleave the other amino acids including Pro, Glu, Asp, and Lys.  相似文献   

13.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

14.
Summary A phthalate ester hydrolyzing enzyme has been purified from the culture broth of Nocardia erythropolis, a Gram-positive bacterium capable of degrading phthalate esters rapidly. The purified enzyme appeared homogeneous on polyacrylamide gel disc-electrophoresis, and its molecular weight was estimated to be about 15,000. The optimal pH and temperature were pH 8.6 and 42°C, respectively. The enzyme was stable in a pH range from 7.0 to 8.0 and below 30°C. The enzyme activity was stimulated by Ca2+ and taurocholate, but inhibited by several metals such as Hg2+. Most of the phthalate esters tested were hydrolyzed to phthalate and alcohols regardless of the type of side-chain. In addition, the enzyme rapidly hydrolyzed olive oil and tributyrin. This enzyme from N. erythropolis may be a novel type of lipase with broad substrate specificity.Microbial degradation of phthalate esters. Part X  相似文献   

15.
The fungus Cunninghamella verticillata was selected from isolates of oil-mill waste as a potent lipase producer as determined by the Rhodamine-B plate method. The lipase was purified from C. verticillata by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The purified enzyme was formed from a monomeric protein with molecular masses of 49 and 42 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 7.5 and the optimum temperature at pH 7.5 was 40 °C. The enzyme was stable between a pH range of 7.5 and 9.0 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, CdCl2 and EDTA. However, the presence of Ca2+, Mn2+ and Ba2+ ions enhanced the activity of the enzyme. The activity of purified lipase with respect to pH, temperature and salt concentration was optimized using a Box–Behnken design experiment. A polynomial regression model used in analysing this data, showed a significant lack of fitness. Therefore, quadratic terms were incorporated in the regression model through variables. Maximum lipase activity (100%) was observed with 2 mM CaCl2, (pH 7.5) at a temperature of 40 °C. Regression co-efficient correlation was calculated as 0.9956.  相似文献   

16.
Summary A thermostable protease fromThermoactinomyces thalpophilus was purified to give a single protein band on disc PAGE with a molecular size of 55000 Da. Optimal proteolytic activity of the purified protease was at pH 6.0 and 70°C. The enzyme was maximally stable between pH 5.0 and 8.0 and retained 62% of its original activity at 70°C after 30 min. Temperature stability was not improved in the presence of Ca2+ (1mm). Enzyme activity was inhibited by AG+, Hg2+, Ba2+ and Co2+, partially inhibited byo-phenanthroline but not by diisopropylfluorophosphate (5mm).
Resumen Se purificó una proteína termoestable deThermoactinomyces thalpophilus que dió una sola banda proteica al someterla a una electroforesis en columna de poliacrilamida (PAGE) y un tamaño molecular de 55.000 Da. La actividad proteolítica de la proteína purificada era óptima a pH 6.0 y 70°C. El enzima tenía máxima estabilidad entre pH 5.0 y 8.0 y retuvo un 62% de su actividad original despues de 30 min at 70°C. La estabilidad térmica no mejoró en presencia de Ca2+ (1mm). La actividad enzimática fue Inhibida por Ag+

Résumé Une protéase thermostable deThermoactinomyces thalpophilus a été purifiée jusqu'à donner une bande protéique unique sur un disque PAGE avec un poids moléculaire de 55000 daltons. L'activé protéolytique optimum de la protéase purifiée se situe à pH 6.0 at à 70°C. L'enzyme présente son maximum de stabilité entre pH 5.0 et 8.0 et conserve 62% de son activité originelle après 30 min à 70°C. La stabilité à la température n'est pas améliorée en présence de Ca2+ 1mm. L'activité enzymatique est inhibée par Ag+, Hg2+, Ba2+ et Co2+. Elle est partiellement inhibée par l'o-phénanthroline mais elle n'est pas inhibée par le di-iso-propylfluorophosphate 5mm.
  相似文献   

17.
A cyanide-hydrolysing enzyme from Burkholderia cepacia strain C-3 isolated from soil was purified to electrophoretic homogeneity by ammonium sulphate precipitation and column chromatography on HiTrap Q (DEAE-agarose) and phenyl-Sepharose HP. The enzyme was purified 48-fold with a 0.8% yield and a final specific activity of 26.8 u/mg protein. The purified enzyme was observed as a single polypeptide band of molecular mass 38 kDa during both denaturing and non-denaturing gel electrophoresis. Enzymatic activity was optimal at pH 8.0–8.5 and at 30–35 °C. Activity was stimulated by Mo2+, Sn2+, and Zn2+, and inhibited by Al3+, Co2+, Cu2+ and Hg2+. The enzyme was specific for cyanide and thiocyanate with formate and ammonia as the main products from KCN degradation. Its K m and V max values were 1.4 mM and 15.2 u/mg protein, respectively. Apparent substrate inhibition occurred at cyanide concentrations greater than 2 mM.  相似文献   

18.
The extracellular enzyme alginate lyase produced from marine fungus Aspergillus oryzae isolated from brown alga Dictyota dichotoma was purified, partially characterized, and evaluated for its sodium alginate depolymerization abilities. The enzyme characterization studies have revealed that alginate lyase consisted of two polypeptides with about 45 and 50 kDa each on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and showed 140-fold higher activity than crude enzyme under optimized pH (6.5) and temperature (35°C) conditions. Zn2+, Mn2+, Cu2+, Mg2+, Co2+ and NaCl were found to enhance the enzyme activity while (Ca2+, Cd2+, Fe2+, Hg2+, Sr2+, Ni2+), glutathione, and metal chelators (ethylenediaminetetraacetic acid and ethylene glycol tetraacetic acid) suppressed the activity. Fourier transform infrared and thin-layer chromatography analysis of depolymerized sodium alginate indicated the enzyme specificity for cleaving at the β-1,4 glycosidic bond between polyM and polyG blocks of sodium alginate and therefore resulted in estimation of relatively higher polyM content than polyG. Comparison of chemical shifts in 13C nuclear magnetic resonance spectra of both polyM and polyG from that of sodium alginate also showed further evidence for enzymatic depolymerization of sodium alginate.  相似文献   

19.
Summary Protein-extracted lucerne fiber was used as carbon and energy source for production of extracellular polygalacturonate lyase byThermomonospora curvata. The optimal fiber concentration was 1.5% (w/v); peal lyase activity in culture fluid occurred after 3 days growth at 53°C. During that time, lyase biosynthesis was controlled through induction; production was accelerated by adding small amounts of pectin or by grinding the fiber to 40-mesh particle size to release more inducer. After 3 days growth, lyase activity decreased; inactivation of the enzyme was delayed by the presence of 1 mM Ca or by inhibition of serine proteases with 0.05 mM phenylmethylsulfonyl fluoride. The molecular weight of the lyase produced during growth on the fiber was 35 kDa compared to 56 kDa for the enzyme produced on pure pectin. TheK m of the 35-kDa form was 0.54% pectin compared to 0.06% for the 56-kDa form. The smaller form was rapidly inactivated at 60°C, the optimal temperature for activity of the larger form.  相似文献   

20.
L-arabinose isomerase (EC 5.3.1.4) mediates the isomerization of D-galactose into D-tagatose as well as the conversion of L-arabinose into L-ribulose. To investigate the properties of L-arabinose isomerase as a biocatalyst for the conversion of galactose to tagatose, the L-arabinose isomerase of Escherichia coli was characterized. The substrate specificity for L-arabinose was 166-fold higher than that for D-galactose. The optimal pH and temperature for the galactose isomerization reaction were 8.0 and 30 °C, respectively. The enzyme activity was stable for 1 h at temperatures below 35 °C and within a pH range of 8–10. The Michaelis constant, K m, for galactose was 1480 mM, which is 25-fold higher than that for arabinose. The addition of Fe2+ and Mn2+ ions enhanced the conversion of galactose to tagatose, whereas the addition of Cu2+, Zn2+, Hg2+, and Fe3+ ions inhibited the reaction completely. In the presence of 1 mM Fe2+ ions, the K m for galactose was found to be 300 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号