首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Recently, it has been shown that supplementation of sows with L-carnitine increases their plasma concentrations of insulin-like growth factor (IGF)-I, and it has been hypothesized that this may stimulate fetal myogenesis. This study was performed to investigate whether piglets of sows supplemented with L-carnitine differ in muscle fibre characteristics, chemical body composition and postnatal growth capability from pigs of control sows. Muscle fibre characteristics and chemical body composition were determined at weaning in 21 piglets of control sows and 21 piglets of sows treated with L-carnitine with similar body weights; postnatal growth capability was determined from weaning until slaughter at a body weight of 118 kg in 80 pigs of control sows and 80 pigs of sows treated with L-carnitine which had also similar body weights at weaning. Piglets of sows supplemented with L-carnitine did not differ in number, area, diameter and type (percentages of slow twitch oxidative + fast twitch oxidative fibres, and fast twitch glycolytic fibres) of muscle fibres in m. longissimus dorsi and m. semitendinosus and in chermical body composition (concentrations of dry matter, crude protein, crude fat) from piglets of control sows. Postnatal growth capability (body weight gains, feed conversion ratio) from weaning to slaughter as well as carcass composition (carcass yield, meat thickness, fat thickness) was also not different between pigs of sows treated with L-carnitine and pigs of control sows. In conclusion, data of this study do not support the hypothesis that L-carnitine supplementation of sows during pregnancy enhances fetal muscle fibre development and increases postnatal growth capability of the offspring.  相似文献   

2.
Recent studies have shown that L-carnitine supplementation of sows increases growth of their piglets during the suckling period. In this study, the composition of the milk of sows supplemented with L-carnitine was determined to find out whether an altered milk composition could account for the increased growth rates of the piglets. Milk of 13 control sows and 14 sows supplemented with L-carnitine (125 mg/d during pregnancy, 250 mg/d during lactation) was collected 5-8 h after birth (colostrum) and on days 10 and 20 of lactation. Concentrations of fat and lactose and the energy content in milk at day 10 and 20 did not differ between both groups of sows. Sows supplemented with L-carnitine had a higher concentration of protein in colostrum (p < 0.05) while concentrations of fat, lactose, immunoglobulins G, M and A as well as the energy content in colostrum did not differ between both groups of sows. These findings show that milk composition does not play a major role for the increased postnatal growth of piglets from sows supplemented with L-carnitine observed in recent studies.  相似文献   

3.
As a result of the selection for genotypes with greater sow prolificacy, litter size increased and, concomitantly, average litter birth weight and early postnatal survival rates of low birth weight (L-BtW) offspring decreased. This study compared the impact of l-carnitine (CAR) and l-arginine (ARG) supplemented with a milk replacer and fed to L-BtW piglets born from large litters from days 7 to 28 of age on growth performance, carcass composition, organ and Semitendinosus muscle (STM) development. A total of 30 female and castrated Swiss Large White piglets weaned at 7 days of age were assigned to three milk replacer diets containing either no supplement (CON), CAR (0.40 g/piglet per day) or ARG (1.08 g/kg BW per day). Piglets were kept in pairs in rescue decks (0.54 m2). They were weighed daily and daily allowance of both, feed and ARG, was adjusted accordingly. Thus, feed allowance depended on growth. Each day, the milk replacer was prepared with water (1:4). Feed (allowance: 60 g dry matter/kg BW per day) was offered daily in six equal rations. Feed intake and feed efficiency was assessed for the pairs and apparent total tract-energy and -protein digestibility was determined from days 21 to 28 of age. On day 28, piglets were euthanized, blood samples were collected and the whole STM and organs were weighed. In STM, the size and metabolic properties of myofibers were determined. No difference in growth performance was found between dietary treatments, but piglets from the CAR group tended (P<0.10) to grow faster during the 1st experimental week and consume more feed from days 14 to 21 as compared with piglets of the CON group. A setback in growth in the last week in the CAR group coincided with the lower (P<0.05) energy and protein digestibility. Dietary treatments had no effect on STM and organ weight and myofiber size. Compared with the other groups, there were trends (P<0.10) for blood serum urea and glucose level to be greater in CAR and for non-esterified fatty acid level to be greater in ARG piglets. The greater (P<0.05) ratio of lactate dehydrogenase to either citrate synthase or β-hydroxyacyl-CoA dehydrogenase indicated that the relative importance of the glycolytic compared with the oxidative pathway was greater in STM of CAR and ARG compared with CON piglets. These results suggest that ARG and CAR supplements were beneficial for muscle maturation whereas findings on phenotypic traits were rather unsystematic.  相似文献   

4.
Dynamics of muscle fibre growth during postnatal mouse development   总被引:3,自引:0,他引:3  

Background  

Postnatal growth in mouse is rapid, with total skeletal muscle mass increasing several-fold in the first few weeks. Muscle growth can be achieved by either an increase in muscle fibre number or an increase in the size of individual myofibres, or a combination of both. Where myofibre hypertrophy during growth requires the addition of new myonuclei, these are supplied by muscle satellite cells, the resident stem cells of skeletal muscle.  相似文献   

5.
6.
Sow litter sizes have increased, subjecting more small piglets to intra-uterine growth restriction (IUGR). Research on the development and growth of IUGR pigs is limited. The objective of this study was to compare the body composition and organ development of IUGR pigs at weaning, and to estimate their growth performance from birth to 30 kg. A total of 142 IUGR and 142 normal piglets were classified at birth based on their head morphology. At weaning, 20 IUGR and 20 normal piglets were collected, a whole-body dual-energy x-ray absorption scan was performed, and the piglets were euthanized for organ measurements. Body weight (BW) was measured weekly from birth to 30 kg, rectal temperature and whole-blood glucose levels were measured weekly from birth to weaning, and blood samples were collected at days 7, 14 and 21 for IGF-1 analysis. Results showed that IUGR pigs have a similar percentage of adipose tissue (P > 0.05) compared to normal pigs at 24 days of age. Organs were smaller (P < 0.001) in IUGR pigs than in normal pigs, whereas brain, liver, lungs and adrenal glands were relatively larger (P < 0.05) in relation to the BW of IUGR pigs. Average birth weight (BiW) of normal pigs was greater (P < 0.001) compared with IUGR pigs (1.38 v. 0.75 kg), and the average daily gain (ADG) of IUGR pigs was reduced from day 0 to 14, day 0 to 28 (weaning) and from weaning to 30 kg compared to normal pigs. From birth to weaning at day 28, IUGR piglets had a 72.9 g/day greater fractional ADG (FADG) in relation to their BiW (P < 0.05), but FADG did not differ (P > 0.05) from weaning to 30 kg. Rectal temperature of IUGR piglets was greater (P < 0.05) on day 7 compared with normal piglets, and, even though blood glucose levels were decreased (P < 0.001) in IUGR piglets at day 0, neither glucose nor IGF-1 concentrations differed (P > 0.05) between IUGR and normal piglets. In conclusion, IUGR piglets exhibited some relatively larger organs at weaning compared to normal pigs, but body composition was similar between IUGR and normal pigs. In addition, IUGR pigs had a reduced ADG from birth to 30 kg, and, although they exhibited a greater FADG during nursing, IUGR pigs still require six additional days to reach a BW of 30 kg in comparison to normal pigs.  相似文献   

7.
This study examined the genetic and phenotypic associations between finisher performance, pre-breeding body condition of the gilt, subsequent lactation feed intake and survival of the primiparous sow to farrow in the second parity. Complete data were available on ~2200 sows, along with additional cohort and historical performance data. Genetic variation was observed for average lactation feed intake (heritability: 0.18 ± 0.04), with a significant proportion of observed variation in average intake attributable to variation in lactation length. Weight and body condition (fatness) at finishing were very highly correlated genetically (0.89 ± 0.03 and 0.90 ± 0.02) and moderately correlated phenotypically (0.58 ± 0.01 and 0.58 ± 0.01) with weight and body condition before mating. Estimates of genetic (r(g)) and phenotypic (r(p)) correlations between feed intake recorded at finishing and average lactation feed intake (LADI) were moderate (r(g) = 0.26 ± 0.16 and 0.42 ± 0.22) and low (r(p) = 0.07 ± 0.02 and 0.08 ± 0.03), with r(g) dependent on the models and data subsets used for lactation intake. Non-unity genetic correlations imply that different genetic control mechanisms regulate feed intake during growth and lactation. Moderate genetic correlations between lactation feed intake with live weight (TWT) or growth rate (TADG) recorded at selection and live weight before mating (0.42 ± 0.11, 0.42 ± 0.11 and 0.37 ± 0.15) were considerably higher than the corresponding phenotypic correlations for LADI with TADG or 29WT (0.09 ± 0.02 and 0.08 ± 0.02). Correlations between fatness at selection (TFAT) or mating (29FT) and LADI were negative but not significantly different from 0. Overall, these data suggest that there is exploitable genetic variation for feed intake during lactation, and that selection is possible if lactation feed intakes are recorded. However, genetic correlations suggest that early growth seems to be related to lactation feed intake capacity. There was generally no strong evidence that selection for lean growth potential in dam lines will substantially diminish sow lactation intake capacity as a correlated response.  相似文献   

8.
Recent studies have shown that L-carnitine supplementation of sows during pregnancy and lactation enhances their reproductive performance, but the underlying mechanisms are still needed to be further confirmed. This study was conducted to investigate the function of L-carnitine on placental development, milk nutrient content and release of hormones in sows. In this experiment, 40 multiparous crossbred sows (Yorkshire × Landrace) were allotted to two groups fed diets with or without a supplemental 50 mg/kg L-carnitine. The experimental diets were fed from d 1 post-coitus until d 21 post-partum. L-carnitine-treated sow had fewer weak piglets (p < 0.05) and a greater percentage of oestrus by 5 after 5-d post-partum (p < 0.05) than control sows. The percentage fat from colostrum was greater in L-carnitine-treated sow than control sows (p < 0.05). L-carnitine-treated sows had greater plasma concentrations of triglyceride and insulin-like growth factor (IGF)-1 and lesser plasma concentrations of glucose and IGF-binding protein (IGFBP-3) on day 60 of pregnancy (p < 0.05). A clearer structure of chorions, better-developed capillaries and absence of necrosis were observed in L-carnitine-treated sows compared with control sows. The protein abundance of IGF-1 and IGF-2 in placental chorions was greater in L-carnitine-treated sows compared with control sows (p < 0.05). This study suggests that sows fed an L-carnitine supplemented diet during pregnancy improved reproductive performance through enhancement of placental development and by increasing IGF concentrations in blood plasma and placental chorions.  相似文献   

9.
10.
The present study was conducted to investigate the effects of dietary amylose and amylopectin ratio on growth performance, meat quality, postmortem glycolysis and muscle fibre type transformation of finishing pigs. Twenty-four barrows (Duroc × Landrace × Yorkshire) with an average initial body weight of 61.7 ± 2.01 kg were randomly assigned to four dietary treatments with amylose: amylopectin ratios of 1:1 (HD), 1:2 (MD), 1:3 (CD) and 1:4 (LD). The results showed that the average daily weight gain of finishing pigs tended to reduce with the ratio of amylose and amylopectin decreased (p = 0.09). Diet LD increased the pH24h value and decreased the shear force in longissimus dorsi (LM) compared with diet HD (p < 0.05). Diet LD decreased the lactate content and the HK-2 mRNA abundance and increased the mRNA abundance of ATP5B in LM compared with diet HD (p < 0.05). Higher mRNA abundance of MyHC I and lesser abundance of MyHC IIb in LM were found in pigs fed diet CD and LD than those fed diet HD (p < 0.05). Furthermore, pigs fed diet LD had higher mRNA abundances of PGC-1α and PPAR δ in LM than other groups (p < 0.05). These results suggested that diet with low amylose and amylopectin ratio could improve meat quality of finishing pigs via delaying muscle glycolysis capacity and shifting muscle fibre types.  相似文献   

11.
A comparison was carried out between the motor unit (MU) firing rate and the characteristics of the twitch and the fibre type composition of anconeus and triceps brachii. Fibre type composition (type I, type II) was determined in whole cross-sections of cadaver specimens. The proportion of type I fibre was 60%-67% in anconeus and 32-40% in the lateral head of triceps brachii. Reflecting these histochemical differences, the contraction time of anconeus and triceps was 92 +/- 9 ms and 68 +/- 9 ms respectively. It follows that anconeus can be classified as a slow muscle, as opposed to the lateral head of triceps. The relationship between MU firing rate and isometric force, tested at 90 degrees elbow flexion, differed between the two muscles for force values below 30% of maximal voluntary contraction. No significant increase in MU firing rate was found in anconeus at forces above 5% of maximal voluntary contraction. It is concluded that even within a single agonistic muscle group acting at a single joint there is an adaptation of MU firing rate to the contractile characteristics of each muscle.  相似文献   

12.
The aim of the study was to determine the relation between peak oxygen uptake V(O2)peak), peak work rate (WRpeak), fiber-type composition, and lower extremity strength and endurance during a maximal incremental cycle test. Thirty-nine healthy sedentary men, aged 30-46, participated in the study. Subjects performed a maximal incremental cycle test and isokinetic knee extension (KE) and flexion (KF) strength and endurance tests at velocities of 60 and 180° · s(-1). Muscle biopsies were taken from m. vastus lateralis and analyzed for fiber-type composition. A significant correlation existed between KE strength and V(O2)peak and WRpeak. Also, KF endurance correlated significantly to V(O2)peak and WRpeak. The KE endurance correlated significantly to WRpeak (rp = 0.32, p < 0.05) and almost significantly to V(O2)peak (rp = 0.28, p = 0.06). Stepwise multiple regression analyses showed that KE strength, KF endurance, and the percentage of type I fibers could explain up to 40% of the variation in V(O2) and WRpeak. The performance of sedentary subjects in a maximal incremental cycle test is highly affected by knee muscle strength and endurance. Fiber-type composition also contributes but to a smaller extent.  相似文献   

13.
Puberty represents the final stage of sexual differentiation during which time the individual acquires reproductive capacity. Puberty is not only characterized by maturation of sexual organs and the formation of oocytes and mature spermatozoa, but also by the development of secondary sexual dimorphism. In industrialized countries the age of puberty has decreased steadily over the last 150 years in association with improved socio-economic conditions. However, the decreased onset of puberty is, especially in the female sex, associated with problematic changes in behaviour such as early onset of sexual activity and resulting in high risk teenage pregnancies. First of all, the improved nutritional status during childhood is discussed as a major cause for the decrease of puberty onset, whereas the impact of nutritional status especially on female sexual maturity is discussed controversially. In our study we analysed the association between body composition (fat tissue and fat free body mass, estimated by BIA analyses), height, Body Mass Index and fat distribution, and signs of puberty such as the timing of menarche in 228 girls and voice breaking and facial hair growth in 191 boys ageing between 10 and 15 years. In both sexes signs of puberty were highly significantly associated with body composition parameters. Nevertheless, marked differences between the two sexes were observed: Female puberty was positively associated first of all with weight status and the absolute and relative amount of body fat, while in signs of male puberty were related positively with a higher amount of fat free body mass and a decreased fat mass. Male voice breaking was significantly associated with increased stature, body weight, waist and hip circumference, lean body mass and total body water, in contrast voice breaking was significantly negatively associated with the fat percentage, the total fat mass and the waist to hip ratio. Female menarche was significantly positively associated with increased body weight, weight status, waist and hip circumference but also with increased absolute and relative fat mass, relative hip circumference, lean body mass and total body water. Only the waist to hip ratio was significantly negatively associated with the onset of menarche.  相似文献   

14.
The impact of fibre level and fibre source on digestibility, gastrointestinal tract (GIT) development, total tract mean retention time (MRT) and growth performance was studied in indigenous Mong Cai (MC) and exotic Landrace × Yorkshire (LY) pigs. The diets were based on maize, rice bran, soyabean meal, fish meal and soyabean oil, and cassava residue (CR) or brewer's grain (BG) as fibrous ingredient sources in the high-fibre diets (HF) and were fed ad libitum. A low-fibre diet (LF), containing around 200 g NDF/kg dry matter (DM), was formulated without CR and BG as feed ingredients. The HF diets (HF-CR and HF-BG) were formulated to contain around 270 g NDF/kg DM. The experiment was arranged as a 2 × 3 factorial completely randomized design with six replications, and lasted 27 days. Increased dietary fibre level resulted in a reduction (P < 0.05) in average daily gain, digestibility of organic matter (OM), CP and gross energy (GE) at the ileum and in the total tract, and in MRT, and an increase (P < 0.05) in the feed conversion ratio and in the weight of the GIT (except for small intestine and caecum). The coefficients of total tract digestibility of fibre fractions were higher in HF diets than in the LF diet, with highest values for diet HF-CR, which had a high proportion of soluble non-starch polysaccharides. MC pigs had longer MRT of digesta than LY pigs (P < 0.05), resulting in higher digestibility at the ileum and in the total tract. Across diets and breeds, the total tract apparent digestibility of OM, CP and GE was positively related (R2 = 0.80 to 0.84) to the MRT of solids, whereas the MRT was negatively related to the DM intake (R2 = 0.60).  相似文献   

15.

Background

Intrauterine growth-restricted (IUGR) neonates impair postnatal skeletal muscle growth. The aim of this study was to investigate whether high nutrient intake (HNI) during the suckling period could improve muscle growth and metabolic status of IUGR pigs.

Methods

Twelve pairs of IUGR and normal birth weight (NBW) pigs (7 days old) were randomly assigned to adequate nutrient intake and HNI formula milk groups. Psoas major (PM) muscle sample was obtained after 21 days of rearing.

Results

IUGR decreased cross-sectional areas (CSA) and myofiber numbers, activity of lactate dehydrogenase (LDH), and mRNA expression of insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), mammalian target of rapamycin (mTOR), ribosomal protein s6 (RPS6), eukaryotic translation initiation factor 4E (eIF4E), protein expression of phosphorylated mTOR (P-mTOR), and phosphorylated protein kinase B (P-Akt) in the PM muscle of pigs. Irrespective of birth weight, HNI increased muscle weight and CSA, the concentration of RNA, and ratio of RNA to DNA, as well as ratio of LDH to β-hydroxy-acyl-CoA-dehydrogenase in the PM muscle of pigs. Furthermore, HNI increased percentages of MyHC IIb, mRNA expression of IGF-1, IGF-1R, Akt, mTOR, RPS6, and eIF4E, as well as protein expression of P-mTOR, P-Akt, P-RPS6, and P-eIF4E in the PM muscle of pigs.

Conclusion

The present findings suggest that high nutrient intake during the suckling period could improve skeletal muscle growth and maturity, which is associated with increasing the expression of protein deposition-related genes and accelerating the development of glycolytic-type myofiber in pigs.
  相似文献   

16.
It is evident that quantitative information on different microbial groups and their contribution in terms of activity in the gastrointestinal (GI) tract of humans and animals is required in order to formulate functional diets targeting improved gut function and host health. In this work, quantitative information on levels and spatial distributions of Bacteroides spp, Eubacterium spp, Clostridium spp, Escherichia coli, Bifidobacterium spp and Lactobacillus/Enterococcus spp. along the porcine large intestine was investigated using 16S rRNA targeted probes and fluorescent in situ hybridisation (FISH). Caecum, ascending colon (AC) and rectum luminal digesta from three groups of individually housed growing pigs fed either a corn-soybean basal diet (CON diet) or a prebiotic diet containing 10 g/kg oligofructose (FOS diet) or trans-galactooligosaccharides (TOS diet) at the expense of cornstarch were analysed. DAPI staining was used to enumerate total number of cells in the samples. Populations of total cells, Bacteroides, Eubacterium, Clostridium and Bifidobacterium declined significantly (P < 0.05) from caecum to rectum, and were not affected by dietary treatments. Populations of Lactobacillus/Enterococcus and E. coli did not differ throughout the large intestine. The relative percent (%) contribution of each bacterial group to the total cell count did not differ between caecum and rectum, with the exception of Eubacterium that was higher in the AC digesta. FISH analysis showed that the sum of all bacterial groups made up a small percentage of the total cells, which was 12.4%, 21.8% and 10.3% in caecum, AC and rectum, respectively. This supports the view that in swine, the diversity of GI microflora might be higher compared to other species. In terms of microflora metabolic activity, the substantially higher numerical trends seen in FOS and TOS treatments regarding total volatile fatty acid, acetate concentrations and glycolytic activities, it could be postulated that FOS and TOS promoted saccharolytic activities in the porcine colon.  相似文献   

17.
Two experiments were conducted to examine the effect of porcine growth hormone (pGH) on performance, carcase composition, muscle and fat deposition rates, muscle fibre characteristics, and fat cell volume in pigs. In the first experiment, ten pairs of littermates were treated with vehicle (saline buffer) or 80 μg pGH per kg live weight per day for 42 days starting at 50 kg live weight. In the second experiment, twelve pairs of littermates were untreated or treated with 3 mg pGH per day from approximately 56 kg live weight to slaughter at approximately 103 kg live weight. All pigs were fed ad libitum. In Experiments 1 and 2, respectively, feed intake decreased (10 and 11%) and the feed/gain ratio improved (8 and 13%), while daily gain was unaltered. There was an increase in deposition rates of muscle (11 and 22%), skin (27 and 23%), and bone (15% in both), and a decrease in deposition rates of intermuscular (48 and 24%) and subcutaneous (82 and 50%) fat. This resulted in a change in carcase composition towards more muscle (5 and 9%), bone (6 and 4%), and skin (18 and 12%), and less intermuscular (30 and 16%) and subcutaneous fat (51 and 32%). The increased muscle mass was due to enhanced hypertrophy of all muscle fibre types, while pGH did not affect the frequency of the different muscle fibre types. The reduction in subcutaneous fat was reflected in a similar reduction in fat cell volume. In contrast to the majority of pigs used in pGH experiments, the genotype used in the present experiments did not respond with respect to daily gain following pGH treatment. Furthermore, the increase in muscle deposition was rather low compared to results reported in pigs of other genotypes. These data together with published data on the cross-sectional area of muscle fibres indicate that genotypes with relatively large muscle fibres are less responsive to pGH treatment than genotypes with relatively small muscle fibres.  相似文献   

18.
Development induced deep anatomical changes and tissue composition alterations in the rat. To determine the extent of these changes, the organ weight and size of 19 and 21 day rat foetuses and of 1, 5, 10, 20 and 30 day old Wistar rat pups have been studied and compared with adults. Different tissues showed varying rates of cell and tissue growth as well as tissue cellularity during development. Tail length is not a good index of skeletal growth. Brain growth was much slower from late intrauterine life to adulthood than most other organs. Skin weight increased more than 3-fold between days 19 and 21 of intrauterine life. Striated muscle proportion to body weight remained practically constant throughout all postnatal life studied.  相似文献   

19.
Two experiments were carried out to investigate the effect of pelleting on the apparent total tract digestibility (ATTD) of energy and nutrients according to the dietary fibre (DF) level in growing pigs (experiment 1) and in adult sows (experiment 2). Four diets based on wheat, barley, maize and soybean meal and supplemented with increased contents of a mixture of wheat bran, maize bran, soybean hulls and sugar beet pulp (116, 192, 268 and 344 g NDF/kg dry matter (DM) in diets 1 to 4) were tested. In experiment 1, 32 growing pigs (62 kg average BW), in two replicates and according to a factorial design, were fed one of the four diets, either as mash or as pellets. The digestibility of energy, organic matter (OM) and all nutrients decreased with DF increasing for both feed forms; the reduction was about 1% for each 1% NDF increase in the diet (P < 0.001). Pelleting improved moderately the digestibility of energy and OM (+1.5% and +1.0%, respectively; P < 0.05) in connection with greater DF (+5%; P < 0.05) and fat digestibility (+25%). Thus, pelleting improved the digestible energy content of diets on average by 0.3 MJ/kg of feed DM (P < 0.01). In experiment 2, four adult dry sows (235 kg average BW) were used in a 4 × 4 Latin square design and fed the four diets used in experiment 1 as pellets. The digestibility of energy, OM and macronutrients also decreased with DF increase (P < 0.001; -0.4% per 1% increase of dietary NDF for energy) while the digestibility of DF (i.e. crude fibre (CF) or ADF) increased (P < 0.001) or remained at a high level. In conclusion, increasing DF in diets decreases the digestibility of nutrients and energy in pigs and in sows. Although positive, the pelleting impact is minor on the energy and nutrients digestibility of fibre-rich diets in growing pigs, even in high-DF diets.  相似文献   

20.
Intrauterine growth restriction (IUGR), resulting in low birth body weight (LBW) occurs naturally in pigs. However, IUGR may also cause persistent changes in physiology and metabolism resulting in poorer performance, organogenesis and meat quality. As IUGR pigs have a lower daily gain from birth to slaughter they may differ in utilization of nutrients and requirements for dietary protein compared with their larger littermates. Thus, the objective in this study was to examine the interaction between birth body weight (BW) and the postnatal dietary protein level, in relation to postnatal performance, organogenesis, muscle metabolism and meat quality. The experiment was carried out with offspring from 16 purebred Danish Landrace gilts mated to Danish Landrace boars. The female and entire male pigs with LBW that survived at weaning were compared with the female and male pigs with the highest/high birth body weight (HBW) within each litter. The offspring were reared individually from weaning and were fed ad libitum a diet containing either a normal level of protein (NP) for optimal growth or an isocaloric diet containing a 30% lower protein content (LP) from 3 weeks to 150 days of age. At slaughter, we found no interactions between birth weight group and dietary protein level for any of the measured traits. The relative crown-rump length (cm/kg) at birth indicates that LBW pigs were thinner than HBW pigs. Daily gain and feed intake were reduced by 14% and 10%, respectively, while the kg feed/kg gain was slightly increased by 3% in LBW pigs compared with HBW pigs. The LP diet reduced daily gain by 27% due to reduced feed intake and increased kg feed/kg gain by 12% and 21%, respectively compared with the NP diet. LBW male pigs produced meat with a higher shear force than male HBW pigs and also LP pigs produced meat with higher shear force than NP pigs. The activity of lactate dehydrogenase in the Longissimus dorsi muscle (LD) was reduced in pigs fed the LP diet. Calpastatin was increased in LD of LBW pigs and decreased in pigs fed the NP diet. In conclusion, these results suggest a rejection of our hypothesis that low birth weight littermates have a lower requirement for dietary protein compared with heavy weight littermates. Furthermore, LBW male pigs and LP fed pigs of both genders produced less tender meat than HBW pigs or NP fed pigs, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号