首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While drying, detached leaves produced ultrasound acoustic emissions (UAE) comparable to emissions from stem and twig wood. Experiments on Ilex aquifolium L. showed that the main source of these signals was cavitation in the veins, to which conduits and fibres probably both contributed. Regions of the leaf blade with abundant mesophyll and only small veins emitted few signals. More signals were counted on the adaxial side of the midrib than on the abaxial one and on the proximal third than on the distal one, in accordance with the anatomical structure. Sound attenuation was pronounced. Eight species were compared with respect to cavitation behaviour, field water relations and pressure–volume curves, and the data showed differences in cumulative number of events and resistance of leaves to cavitation. Data were generally in good agreement with anatomical structure and habitat preferences. The number of signals per conduit counted on cross-sections was in some leaves much higher than unity, which suggests short xylem elements or an acoustic activity of cells other than conduits. There was no correlation between cavitation threshold or cumulative number of signals and the degree of sclerophylly; unexpectedly, there was a correlation between the cumulative number of signals at a water potential of -1.3 MPa and the bulk modulus of elasticity.  相似文献   

2.
 Deciduous larches, Larix spp., and evergreen pines, Pinus spp., are sympatric Pinaceae conifers. Adjacent monocultures of 10-year-old Larix decidua Mill. and Pinus resinosa Ait. were subjected to single-season artificial defoliation by clipping from 0% to 99% of each needle. Survival, above-ground productivity, and architecture were measured for 36 months. P. resinosa and L. decidua exhibited differential relationships with defoliation intensity and recovery time. Two months after treatment, defoliation reduced larch height growth but had no effect on radial growth. By contrast, P. resinosa stem radial growth was reduced immediately, but height growth was not decreased until the following year. Pine leader growth and above-ground biomass following 66% defoliation never recovered to control values or 33% defoliated pines. Conversely, defoliated larch quickly recovered from an initial growth loss to eliminate all treatment effects on biomass. The plasticity in architectural response found in larch, but not pine, might partially account for defoliation tolerance. Both P. resinosa and L. decidua exhibited non-linear responses to defoliation. These patterns may be caused partially by the uneven distribution of nutrients within needles, rather than a simple function of leaf area lost to defoliators. Concentrations of 13 nutrients in P. resinosa were highest either in the mid- (Ca, Mg, S, Zn, B, Mn, Fe, Al and Na) or basal- (N, P, K, and Cu) section. The relatively low nutrient content in needle tips may contribute to similar biomass productivity between trees defoliated 33% and controls. Removal of needle mid-sections significantly reduced whole-plant productivity. In contrast, L. decidua nutrients are concentrated in the distal sections. Nutrient concentrations were generally highest in larch. Our results agree with an emergent prediction of the carbon/nutrient balance theory that defoliation more severely reduces growth of evergreen than deciduous species. These results are discussed within the physiological, ecological and evolutionary context of allocation theory, with implications for natural resource management and plant-insect interaction theory. Received: 6 April 1995 / Accepted: 29 August 1995  相似文献   

3.
The classical “low latitude–high defense” hypothesis is seldom supported by empirical evidence. In this context, we tested latitudinal patterns in the leaf defense traits of deciduous broadleaved (DB) and evergreen broadleaved (EGB) tree species, which are expected to affect herbivore diversity. We examined the co-occurrence of leaf defense traits (tannin and phenol content, leaf mechanical strength, leaf dry matter content, leaf mass per area, and leaf thickness) in 741 broadleaved tree species and their correlations with species geographical range in East Asian island flora. We discovered contrasting latitudinal defense strategy gradients in DB and EGB tree species. DB species employed chemical defenses (increasing tannin and phenol content) at higher latitudes and physical defenses (softer and thinner leaves) at lower latitudes, whereas EGB tree species exhibited opposite latitudinal defense patterns. The “low latitude high defense” hypothesis included a paradoxical aspect in chemical and physical defense traits across broadleaved tree species. To reconcile paradoxical defense strategies along the latitudinal gradient, we conclude that interactive correlations among leaf traits are controlled by leaf longevity, which differs between DB and EGB tree species.  相似文献   

4.
Using dendrochronological techniques, this study examined whether tree-ring width of two evergreen broad-leaved species (Cleyera japonica, Eurya japonica) at their inland northern distribution limit in central Japan is more limited by low temperature compared with two co-dominating deciduous broad-leaved species (Fagus japonica, Magnolia hypoleuca) and two evergreen conifer species (Chamaecyparis obtusa, Abies firma), whose distribution limits are further north. The two deciduous broad-leaved species and the two evergreen conifers are tall tree species. Evergreen broad-leaved Cleyera japonica is a sub-canopy species and Eurya japonica is a small tree species. The tree-ring widths of four of the six species (except for Eurya japonica and Magnolia hypoleuca) correlated positively with the March temperature just before the start of the growth period. For deciduous broad-leaved Magnolia hypoleuca, the tree-ring width was correlated positively and negatively with July temperature and precipitation, respectively. However, the other deciduous broad-leaved Fagus japonica showed no such relationships. For the evergreen broad-leaved Cleyera japonica and evergreen conifers Chamaecyparis obtusa and Abies firma, tree-ring widths correlated positively with winter temperatures, probably because evergreen species can assimilate during warm winters. The tree-ring width of Cleyera japonica also correlated positively with temperatures of many months of the growth period. By contrast, the tree-ring width of the other evergreen broad-leaved Eurya japonica showed no positive correlation with the temperature in any month. Most Eurya japonica trees were suppressed by tall trees, which might disguise any climate effect. Thus, there were species differences in response to climate for each life form, and the tree-ring width of Cleyera japonica at the northern distribution limit was more limited by low temperatures compared with co-dominating species. It is suggested that growth of Cleyera japonica is increased by global warming at the latitudinal ecotone.  相似文献   

5.
Foliage dynamics of three functional tree types representing major components of the tropical montane evergreen forest in southern part of Central Ethiopia were compared. The species were Podocarpus falcatus (evergreen gymnosperm), Prunus africana (evergreen broadleaf), and Croton macrostachyus (facultative deciduous). The hypothesis examined is that in such tropical trees, endogenous control of foliage dynamics by the leaf life-spans (LLS) is largely dominant over external signals. Crown foliage turnover, leafiness of twigs, LLS, photosynthetic performance, respiration rate, specific leaf area, and relative growth rates of the stems were investigated. Foliage dynamics and leafiness of the twigs were monitored over 2?years while leaf traits were followed over 3?months. The degree of inter and intra-individual synchronization of foliage phenophases was examined to get an estimate of the contributions of endogenous and external signals to the dynamics of the foliages. Autoregression analysis indicated significant influence of the moisture regime on leaf sprouting of Croton and Podocarpus. During pronounced dry periods, new leaves were not developed. Analysis of phenological data using circular statistics revealed that in spite of strong inter-individual synchronization of leaf flush and fall (Podocarpus and Croton), the dynamics of individual parts of the crowns were less synchronized. LLS was independent of climate factors and it had substantial contribution to the control of foliage turnover. Moreover, examination of ecophysiological traits of developing leaves of the studied functional types showed differing patterns with LLS corroborating the ecophysiological characteristics. Although overlaid by fungal infestation, both the foliage and ecophysiological properties of Prunus resemble that of Podocarpus but the former exhibited a shorter LLS and slightly higher metabolic rates. Nevertheless, all species reacted positively to high moisture with respect to stem growth. In spite of largely differing weather conditions of the 2?years, direct competitive advantage of one of the species over the others could not be detected.  相似文献   

6.
* Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees.  相似文献   

7.
In a laboratory study, we examined growth and survival of the caddisfly, Lepidostoma unicolor, feeding on two types of native leaf litter (Alnus rhombifolia [Alder] and a Salicaceae mix [Salix spp. and Populus fremontii]) and two invasive, non-native species (Tamarix ramosissima [saltcedar] and Arundo donax [giant reed]). Larval survival was high (>85%), and did not differ, among those fed Alnus, Salicaceae, or Tamarix litter, but was much lower (20%) for larvae fed Arundo litter. Mean dry biomass of larvae fed Tamarix was 45% greater than that of larvae fed Alnus, and both were significantly greater than the biomasses of insects fed Salicaceae or Arundo. Although both Alnus and Tamarix increased in percent nitrogen with conditioning, Alnus had a significantly higher nitrogen content (4.9 and 3.6%, respectively). Final C : N-values for Alnus and Tamarix were below 18, while C : N for Arundo and Salicaceae were 56 and 44, respectively. Greater growth of larvae fed Tamarix is likely due to the high nutritive value of the conditioned litter, whereas conditioning of Arundo litter did not result in improved nutritive values. Larvae in the Alnus and Salicaceae treatments fed on the entire surface of the leaves until only the skeletons remained. In contrast, larvae in the Arundo treatments focused feeding activity along the margins and the torn portions of the blades. The low nutritional quality of Arundo and the high quality, but ephemeral nature of Tamarix litter potentially have negative effects on stream invertebrate production owing to the quality and duration of availability of leaf litter, as compared with native riparian vegetation.  相似文献   

8.
Ge  Jielin  Xie  Zongqiang  Xu  Wenting  Zhao  Changming 《Plant and Soil》2017,412(1-2):345-355
Plant and Soil - Our understanding of the determinants of leaf litter decomposition is lacking for mixed evergreen and deciduous broad-leaved forests compared with tropical and temperate forests....  相似文献   

9.
10.
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.  相似文献   

11.
Shoot and leaf growth rate as well as shoot hydraulic conductance per unit leaf area (KSL) were measured on three evergreen (Viburnum tinus L., Prunus laurocerasus L., Laurus nobilis L.) and three deciduous (Corylus avellana L., Juglans regia L., Castanea sativa L.) trees growing under the same environmental conditions. The times required to complete shoot growth (27 days for P. laurocerasus to 51 days for V. tinus) and leaf expansion (24 days for C. sativa to 42 days for C. avellana) were very different among the studied species. These species also differed in KSL that ranged between 1.5 and 3.5 e-4 kg s-1 m-2 MPa-1 in C. avellana and C. sativa, respectively, with intermediate values recorded in the other species. A strong, negative and statistically significant correlation was found to exist between KSL and the time required for complete leaf expansion. This suggests that duration of leaf growth is shortened by the high hydraulic efficiency of the shoot. In contrast, no statistically significant relationship was found to exist between KSL and shoot growth rate. Whether a high leaf growth rate can be interpreted as advantageous to plants or it is only an epiphenomenon of the high efficiency in the vertical water transport is discussed.  相似文献   

12.
13.
Leaf and bud demography and shoot growth were studied in 10 evergreen (ES) and 15 deciduous (DS) tree species occurring between 600 and 2200 m elevation in the central Himalayan mountains in India. Results were analyzed to help explain why ES prevail in the vegetation of this region, even though the number of ES is no greater than for DS. Although each species had its own pattern with regard to leaf and bud demography and seasonality of shoot extension and radial growth, it was possible to group the species on the basis of shoot growth phenology. In most species, leaves emerged during March-April, at the onset of warm and dry summer season. The ES recruit leaves in shoots more rapidly than the DS. Across all species, peak number of leaves per shoot (5.8–20.7), peak leaf area per shoot (116.2–1559.2 cm2), peak number of vegetative buds per shoot (1.9–14.5), bud survival per shoot (23–84%), shoot extension growth (6.4–40.8 cm) and shoot extension period (13–30 weeks) varied considerably. The peak leaf area per shoot (587.7 vs. 246.7 cm2) and shoot extension growth (19.3 vs. 11.2 cm) were significantly greater for DS than for ES, and these two functional groups of species were clearly separable with regard to shoot growth characteristics.Results indicate that rapid recruitment of leaf crop in the shoots, longer leaf life-span, and access to ground water due to deep roots were some of the advantages, the ES had over the DS, that may have likely enable them to maintain growth for a longer period in this region of warm winters and longer winter day length as compared to temperate climates. In the shallow rooted DS, shoot growth seems to be much affected by a seasonal drought in winter and they are likely to be affected more in the event of failure of monsoon rains in this region.  相似文献   

14.
叶片功能性状能反映植物对环境的高度适应能力和复杂生境下的自我调控能力,同时也能反映植物的基本特征和对资源的有效利用率。以木论国家级自然保护区喀斯特常绿落叶阔叶林144种优势木本植物为研究对象,测定其叶厚(LT)、叶面积(LA)、比叶面积(SLA)、叶长宽比(L/W)、叶组织密度(LTD)叶片形态性状和12种叶元素性状特征及变异程度,并探讨植物对喀斯特生境的适应策略。结果表明:17个性状变异程度不同,其中叶面积变异系数最大,达到133.31%,叶片碳变异系数最小,为7.73%,叶元素变异程度普遍高于叶形态性状变异程度。不同叶习性物种间叶厚、比叶面积、叶长宽比、叶氮含量性状差异达到显著水平。部分叶性状呈显著相关,得到一系列最佳功能性状组合,体现植物对喀斯特地区特殊生境的适应性。沿着性状贡献率较高的PC1轴,能够定义出叶经济谱,大部分常绿植物采取经济保守策略,而大部分落叶植物则聚集在资源获取的一侧。相较于邻近非喀斯特地区,喀斯特地区植物有较小的LA、SLA。这些结果体现了喀斯特地区植物叶片形成的不同叶性状特征,以及分布于经济谱两端的常绿和落叶植物的不同资源获取策略,揭示了植物对生境的适应策略...  相似文献   

15.
16.
The influence of plant diversity on slope stability was investigated at early phases of succession in a mixed forest in Sichuan, China. The first phase comprised big node bamboo (Phyllostachys nidularia Munro) only. In the second phase, bamboo co-existed with deciduous tree species and in the third phase, deciduous species existed alone. Root density at different depths and root tensile strength were determined for each species. The factor of safety (FOS) was calculated for slopes with and without vegetation for each succession phase. For phase 2, FOS was determined for different species mixtures and positions. In phase 3, simulations were performed with a single tree at the top, middle or toe of the slope. Due to its shallow root system, bamboo contributed little to slope stability. In simulations with the tree at the top or middle of the slope, FOS decreased because tree weight added a surcharge to the slope. FOS increased with the tree at the bottom of the slope. Different mixtures of species along the slope had no influence on FOS. Differences in root tensile strength between species played a small role in FOS calculations, and tree size and density were the most important factors affecting slope stability, excluding hydrological factors.  相似文献   

17.
青冈常绿阔叶林凋落物分解过程中营养元素动态   总被引:19,自引:6,他引:13  
应用分解袋法研究了浙江建德青冈常绿阔叶林凋落物分解过程中的养分动态.结果表明,在2a的分解过程中,各凋落物元素的年均释放率为C 27.91%~44.06%,N 30.77%~39.58%,P 33.33%~42.86%,K 42.31%~48.19%,Ca 18.67%~36.22%,Mg 35.71%~47.22%,Mn 25.00%~37.50%,Cu 3.80%~16.21%,Zn -17.52%~26.60%.K和Mg流动性较大,Zn、Cu和Ca相对稳定,P、Zn、Cu、Ca、N和Mn在分解过程中有不同程度累积.干物质残留量与N、Ca、Mn、Cu和Zn的残留率呈负相关,与C、K和Mg呈正相关.C、N主要以线性衰减方式释放,P和Mg主要以复合函数方式释放,K主要以对数方式释放,Ca、Mn、Cu和Zn残留率具有3种以上的最优模型.Cu、Zn、Ca和Mn对干物质的分解有促进作用.C:N比是预示分解速率的最理想指标.枯叶中C:N比对于N固持和矿化的分界值在20:1左右,C:P比对于P的净矿化的临界值在600:1左右.  相似文献   

18.
19.
The establishment and spread of non‐native, invasive shrubs in forests poses an important obstacle to natural resource conservation and management. This study assesses the impacts of the physical removal of a complex of woody invasive shrub species on deciduous forest understory resources. We compared leaf litter quantity and quality and understory light transmittance in five pairs of invaded and removal plots in an oak‐dominated suburban mature forest. Removal plots were cleared of all non‐native invasive shrubs. The invasive shrubs were abundant (143,456 stems/ha) and diverse, dominated by species in the genera Ligustrum, Viburnum, Lonicera, and Euonymus. Annual leaf litter biomass and carbon inputs of invaded plots were not different from removal plots due to low leaf litter biomass of invasive shrubs. Invasive shrub litter had higher nitrogen (N) concentrations than native species; however, low biomass of invasive litter led to low N inputs by litter of invasive species compared to native. Light transmittance at the forest floor and at 2 m was lower in invaded plots than in removal plots. We conclude that the removal of the abundant invasive shrubs from a native deciduous forest understory did not alter litter quantity or N inputs, one measure of litter quality, and increased forest understory light availability. More light in the forest understory could facilitate the restoration of forest understory dynamics.  相似文献   

20.
《植物生态学报》2018,42(6):619
凋落物是陆地生态系统的重要组成部分, 凋落物动态特征可以反映出生态系统的存在状况以及环境对植被的影响作用。为探究北亚热带常绿落叶阔叶混交林凋落物产量及现存量的动态及其影响因素, 该研究观测了神农架地区一处典型植被2009-2015年的凋落物产量及现存量, 据此分析其动态特征及其与气象因素的关系。研究结果表明: 该森林凋落物平均年产量及现存量分别为5.94 t·hm -2和10.46 t·hm -2, 2009至2014年均无明显年际变化趋势, 但在2015年均显著降低, 且当年倒春寒天数显著高于其他年份; 季节动态变化呈现双峰型, 峰值分别出现在3-5月和10月; 凋落物月产量与当月的前第1-4个月的月平均气温正相关, 与当月的前第8-10个月的月平均气温负相关, 且与当月的前第6-7及第10个月的月平均相对湿度负相关; 凋落物产量季节性指数平均值为0.032, 与年平均气温显著正相关。可见, 长时间倒春寒现象会显著影响凋落物年产量及现存量, 月平均气温和相对湿度对凋落物产量季节动态的影响有明显的滞后性, 且年平均气温对北亚热带主要森林类型的凋落物产量季节性指数有显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号