首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200-300 micrograms/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-L-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT), but not poly(dI-dC).poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the 'de novo' activity of the enzyme.  相似文献   

2.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200–300 μg/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-l-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC) · poly(dG-dC) and poly(dA-dT) · poly(dA-dT), but not poly(dI-dC) · poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the ‘de novo’ activity of the enzyme.  相似文献   

3.
Previously, the purification of DNA methyltransferase from murine P815 mastocytoma cells by immunoaffinity chromatography was described (Pfeifer, G.P., Grünwald, S., Palitti, F., Kaul, S., Boehm, T.L.J., Hirth, H.P. and Drahovsky, D. (1985) J. Biol. Chem. 260, 13787-13793). Proteins that stimulate the enzymatic activity of DNA methyltransferase have been purified from the same cells. These proteins, which partially coelute with DNA methyltransferase from DEAE-cellulose and heparin-agarose, are separated from the enzyme during the immunoaffinity purification step. A further purification of the stimulating proteins was achieved by butanol extraction, DEAE-cellulose chromatography and gel filtration on Superose 12. Two DNA methyltransferase-stimulating protein fractions were obtained. SDS-polyacrylamide gel electrophoresis of one fraction showed a single polypeptide with a molecular mass of 29 kDa. The second fraction consisted of 5 or 6 polypeptides with molecular masses 78-82 and 51-54 kDa. The proteins stimulate both de novo and maintenance activity of DNA methyltransferase about 3-fold. They enhance the methylation of any natural DNA and of poly[(dI-dC).(dI-dC)] but inhibit the methylation of poly[(dG-dC).(dG-dC)]. The purified proteins do not form a tight complex with DNA methyltransferase; however, they bind both to double-stranded and single-stranded DNA. The sequence specificity of DNA methyltransferase is obviously altered in presence of these proteins.  相似文献   

4.
We have purified GST-fused recombinant mouse Dnmt3a and three isoforms of mouse Dnmt3b to near homogeneity. Dnmt3b3, an isoform of Dnmt3b, did not have DNA methylation activity. Dnmt3a, Dnmt3b1 or Dnmt3b2 showed similar activity toward poly(dG-dC)-poly(dG-dC) for measuring de novo methylation activity, and toward poly(dI-dC)-poly(dI-dC) for measuring total activity. This indicates that the enzymes are de novo-type DNA methyltransferases. The enzyme activity was inhibited by NaCl or KCl at concentrations >100 mM. The kinetic parameter, KmAdoMet, for Dnmt3a, Dnmt3b1 and Dnmt3b2 was 0.4, 1.2 and 0.9 µM when poly(dI-dC)-poly(dI-dC) was used, and 0.3, 1.2 and 0.8 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. The KmDNA values for Dnmt3a, Dnmt3b1 and Dnmt3b2 were 2.7, 1.3 and 1.5 µM when poly(dI-dC)-poly(dI-dC) was used, and 3.5, 1.0 and 0.9 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. For the methylation specificity, Dnmt3a significantly methylated CpG >> CpA. On the other hand, Dnmt3b1 methylated CpG > CpT ≥ CpA. Immuno-purified Dnmt3a, Myc-tagged and overexpressed in HEK 293T cells, methylated CpG >> CpA > CpT. Neither Dnmt3a nor Dnmt3b1 methylated the first cytosine of CpC.  相似文献   

5.
DNA methyltransferase activity has been observed in a total crude homogenate of rice cells grown in suspension culture using either native plant DNA or, under the conditions used, the more responsive hemimethylated poly (dI-MedC).poly(dI-dC). Using the latter substrate we have purified an enzyme fraction 380-fold by salt extraction of chromatin, DEAE cellulose and phosphocellulose. This purified fraction showed enzyme activity only with poly (dI-MedC).poly(dI-dC) thus suggesting the occurrence in plants of a DNA methyltransferase specific for hemimethylated DNA. A Mr value of 54000 was calculated on the basis of the sedimentation coefficient which was determined by sucrose density gradient centrifugation. Apparent Km values for poly (dI-MedC).poly(dI-dC) and S-adenosyl-L-methionine were found to be 17 micrograms/ml and 2.6 microM, respectively.  相似文献   

6.
P A Mirau  D R Kearns 《Biochemistry》1984,23(23):5439-5446
One- and two-dimensional nuclear Overhauser effects (2D NOE) have been used to compare the conformational properties of 60-80 base pair long duplexes of the synthetic DNA polymer poly(dI-dC) with those of poly(dI-dbr5C) and poly(dG-dC) in the B and Z conformations. Cross peaks in the 2D NOE spectra arising from proton-proton dipolar interactions which are more or less independent of the DNA conformation are used to assign the spectra of these molecules. Other cross peaks are sensitive to the conformational details, and these are used to make deductions about the average conformation in solution. The proton-proton interactions that give rise to the cross peaks in the 2D NOE spectrum of poly(dI-dC) are indicative of a B family conformation and rule out the possibility of some alternative conformations, including A, Z, alternating B, and left-handed B-DNA. The spectra are similar to those obtained from B-form poly(dI-dbr5C) and poly(dG-dC) but different from Z-form poly(dG-dC). Taken together, these results indicate that the solution conformation of poly(dI-dC) is not unusual but more closely resembles that of other B-form DNAs.  相似文献   

7.
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.  相似文献   

8.
Mammalian DNA methyltransferases prefer poly(dI-dC) as substrate   总被引:1,自引:0,他引:1  
The synthetic duplex DNA, poly(dI-dC).poly(dI-dC), is methylated in vitro by human or murine DNA methyltransferases at 20-100 times the rate of other nonmethylated DNAs. Preparation of the hemimethylated derivative, poly(dI-dMeC).poly(dI-dC), of this polymer increases its effectiveness as a substrate by 2-fold, making it 4-10 times more effective as a substrate for mammalian DNA methyltransferases than any other hemimethylated DNA so far reported. However, the apparent slower rate of de novo methylation of poly(dI-dC).poly(dI-dC) as compared to the hemimethylated derivative is due to substrate inhibition, unique to the unmethylated polymer, as the rates of de novo and maintenance methylation are identical at low substrate concentrations.  相似文献   

9.
The enzymatic methylation of chemically alkylated DNA and of poly(dG-dC) X poly(dG-dC) by beef brain DNA(cytosine-5-)-methyltransferase have been tested. The alkylation by dimethylsulfate, which yields mostly 7 methylguanine (m7G) and 3 methyladenine (m3A) do not affect the enzymatic methylation. The dimethylsulfate alkylated poly(dG-dC) X poly(dG-dC) converted into the Z-form in the presence of MgCl2, is just as well methylated as the native or the alkylated polynucleotide in the B-form. The alkylation of DNA or of poly(dG-dC) X poly(dG-dC) by methylnitrosourea yields, in addition to the above base modifications described for dimethylsulfate, methylphosphotriesters and O6-methylguanine. The enzymatic methylation of these substrates modified by methylnitrosourea is decreased. This decrease is proportional to the extent of the chemical alkylation of the substrate.  相似文献   

10.
Quantitative analysis of DNA-porphyrin interactions   总被引:1,自引:0,他引:1  
Nitta Y  Kuroda R 《Biopolymers》2006,81(5):376-391
The binding of manganese(III)-tetra(4-N-methylpyridyl)porphyrin (MnTMpyP) with synthetic poly(dA-dT)2, poly(dI-dC)2, and poly(dG-dC)2 DNAs as well as calf thymus (CT) DNA has been quantitatively studied in detail using induced CD (circular dichroism) spectroscopy in the Soret absorption band. The CD spectra, which changed greatly depending on the porphyrin to DNA base-pair molar ratio (r), were normalized with respect to DNA concentration and deconvoluted. Three independent component binding modes (named mode 1, 2, and 3 in the order of increasing r values) were identified, which successfully simulated the observed CD spectra with negligibly small residuals for a wide range of r values. In the case of poly(dA-dT)2, poly (dI-dC)2, and CT DNA, all the three modes appeared, whereas in the case of poly(dG-dC)2 DNA, only modes 1 and 3 appeared in the r range studied. The r dependence of each binding mode, i.e., its relative affinity toward DNA, has been revealed by this analysis. Mode 1, which appeared as a single binding mode at very low r values (r < or = ca. 0.05), was inhibited by the addition of methyl green, a drug that preferentially binds to the major groove of poly (dA-dT)2 DNA. Berenil, a known minor groove binder to poly(dA-dT)2 or poly(dI-dC)2 DNA, inhibited modes 2 and 3. From these inhibition experiments as well as comparison of the component spectra for DNAs of different sequence, a binding site on DNA was proposed for each component binding mode. The number of DNA base pairs covered by a single molecule of porphyrin was estimated.  相似文献   

11.
On the cooperative and noncooperative binding of ethidium to DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
The equilibrium binding of ethidium bromide to native DNAs and to poly(dG-dC) X poly(dG-dC) has been studied by both phase partition and direct spectrophotometric techniques. The binding isotherms obtained from both experimental techniques show that ethidium binds in a cooperative manner to E. coli DNA. On the other hand, no evidence of cooperative binding was observed in the binding isotherms obtained with calf thymus, C. perfringens, M. lysodeikticus, or poly(dG-dC) X (dG-dC) under the experimental conditions used (0.1 M NaCl).  相似文献   

12.
Mammalian DNA methyltransferase 1 (Dnmt1) is responsible for copying the DNA methylation pattern during cell division. Since Dnmt1 plays an important role in carcinogenesis, it is of particular interest to search for its specific inhibitors. To design oligonucleotide inhibitors of human Dnmt1, a number of singlestranded, double-stranded, and hairpin DNA structures containing a canonical or a modified Dnmt1 recognition site (5′-CG) were constructed on the basis of a 22-nt sequence. Structural features such as a C:A mismatch, phosphorothioates, and hairpins proved capable of incrementally increasing the oligonucleotide affinity for Dnmt1. An improvement of inhibitory properties was also achieved by replacing the target cytosine with 5,6-dihydro-5-azacytosine, 5-methyl-2-pyrimidinone, or 6-methyl-pyrrolo-[2,3-d]-2-pyrimidinone. The concentration that caused 50% inhibition of methylation of 1 μM poly(dI-dC) · poly(dI-dC), a conventional DNA substrate, was approximately 10?7 M for the most efficient oligonucleotides. Under the same in vitro conditions, these oligonucleotide inhibitors demonstrated a substantially stronger effect compared to known Dnmt1 inhibitors, which were used as controls.  相似文献   

13.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

14.
The mouse (cytosine-5) DNA methyltransferase (Dnmt1) consists of a regulatory N-terminal and a catalytic C-terminal domain, which are fused by a stretch of Gly-Lys dipeptide repeats. The C-terminal region contains all of the conserved motifs found in other cytosine-5 DNA methyltransferases including the relative position of the catalytic Pro-Cys dipeptide. In prokaryotes, the methyltransferases are simpler and lack the regulatory N-terminal domain. We constructed three hybrid methyltransferases, containing the intact N-terminus of the murine Dnmt1 and most of the coding sequences from M.HhaI (GCGC), M.HpaII (CCGG) or M.SssI (CG). These hybrids are biologically active when expressed in a baculovirus system and show the specificity of the parental C-terminal domain. Expression of these recombinant constructs leads to de novo methylation of both host and viral genomes in a sequence-specific manner. Steady-state kinetic analyses were performed on the murine Dnmt1-HhaI hybrid using poly(dG-dC).poly (dG-dC), unmethylated and hemimethylated oligonucleotides as substrates. The enzyme has a slow catalytic turnover number of 4.38 h(-1) for poly(dG-dC). poly(dG-dC), and exhibits 3-fold higher catalytic efficiency for hemimethylated substrates.  相似文献   

15.
The reversible binding of neocarzinostatin chromophore to polynucleotides was studied in order to understand the molecular basis of its base sequence-specificity in DNA damage production. Studies of the spectroscopic and thermodynamic properties of chromophore-polynucleotide interactions reveal that the binding of the chromophore to poly(dA-dT) is qualitatively and quantitatively different from that to poly(dG-dC) (and poly(dI-dC]. From these and other experiments using double-stranded mixtures of homopolynucleotides, it is proposed that the observed A T specific intercalation might result from differential recognition of minor variations in the B-DNA type structure by the chromophore.  相似文献   

16.
The repair of O6-methylguanine present in N-methylnitrosourea (MNU)-treated alternating polynucleotides MNU-poly(dG-dC) X poly(dG-dC) and MNU-poly(dG-me5dC) X poly(dG-me5dC] was investigated using O6-methylguanine-DNA methyltransferase purified from Escherichia coli. Both modified polynucleotides are equally good substrates for the DNA methyltransferase when they are in the B-form. The substrate properties of the MNU-treated polynucleotides do not differ from those of MNU-treated DNA. One of these modified polynucleotides, MNU-poly(dG-me5dC) X (dG-me5dC), can adopt the Z-conformation under physiological conditions. The conformational transition of the poly(dG-me5dC) X poly(dG-me5dC) from the B-form to the Z-form was monitored by the modification of its spectroscopic properties and by the specific binding of antibodies raised against Z-DNA. The O6-methylguanine residues are repaired in MNU-poly(dG-me5dC) X poly(dG-me5dC) in B-form. At variance, the conversion of this template to the Z-form completely inhibits the repair of the O6-methylguanine residues. The cooperative transition from the Z- to the B-form of MNU-poly(dG-me5dC) X poly(dG-me5dC), mediated by intercalating drugs such as ethidium bromide, restores the ability of MNU-poly(dG-me5dC) X poly(dG-me5dC) to be substrate for the transferase. These results imply that the promutagenic DNA lesion O6-methylguanine persists in Z-DNA fragments and suggest that DNA conformation modulates the extent of DNA repair and, as a result, plays an important role in determining the mutagenic potency of chemical carcinogens.  相似文献   

17.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns. Dnmt3L, a member of the Dnmt3 family, has been reported to be necessary for maternal methylation imprinting, possibly by interacting with Dnmt3a and/or Dnmt3b (Hata, K., Okano, M., Lei, H., and Li, E. (2002) Development 129, 1983-1993). In the present study, the effect of DNMT3L, a human homologue of Dnmt3L, on the DNA methylation activity of mouse Dnmt3a and Dnmt3b was examined in vitro. DNMT3L enhanced the DNA methylation activity of Dnmt3a and Dnmt3b about 1.5-3-fold in a dose-dependent manner but did not enhance the DNA methylation activity of Dnmt1. Although the extents of stimulation were different, a stimulatory effect on the DNA methylation activity was observed for all of the substrate DNA sequences examined, such as those of the maternally methylated SNRPN and Lit-1 imprinting genes, the paternally methylated H19 imprinting gene, the CpG island of the myoD gene, the 5 S ribosomal RNA gene, an artificial 28-bp DNA, poly(dG-dC)-poly(dG-dC), and poly(dI-dC)-poly(dI-dC). DNMT3L could not bind to DNA but could bind to Dnmt3a and Dnmt3b, indicating that the stimulatory effect of DNMT3L on the DNA methylation activity may not be due to the guiding of Dnmt3a and Dnmt3b to the targeting DNA sequence but may comprise a direct effect on their catalytic activity. The carboxyl-terminal half of DNMT3L was found to be responsible for the enhancement of the enzyme activity.  相似文献   

18.
Previously, we have derived murine hybridomas producing monoclonal antibodies against DNA methyltransferase from human placenta (Kaul, S., Pfeifer, G. P., and Drahovsky, D. (1984) Eur. J. Cell Biol. 34, 330-335). One of these monoclonal antibodies, M2B10, which undergoes immune complex formation also with DNA methyltransferase from P815 mouse mastocytoma cells, was used for the immunoaffinity purification of mouse and human DNA methyltransferases. In sodium dodecyl sulfate-polyacrylamide gels and in immunoblotting studies, the immunoaffinity-purified mouse DNA methyltransferase revealed 5-6 polypeptides of molecular masses 150-190 kDa. The immunoaffinity-purified human placental DNA methyltransferase was characterized by a polypeptide of 158 kDa, presumably representing the native enzyme molecule and by polypeptides of 105-108 kDa and 50-68 kDa, probably generated by a limited proteolysis of the native enzyme molecule. The immunoaffinity-purified DNA methyltransferases preferred hemimethylated DNA substrates over unmethylated ones, and among all unmethylated substrates tested, poly[(dG-dC).(dG-dC)] had the highest methyl-accepting activity. DNA polymers of at least 90 base pairs in length were required for the binding reaction of the immunoaffinity-purified human DNA methyltransferase, and this initial binding was apparently independent of the nucleotide composition of the DNA polymer and of the presence of S-adenosyl-L-methionine.  相似文献   

19.
A Z-DNA binding protein isolated from D. radiodurans   总被引:2,自引:0,他引:2  
A DNA binding protein isolated from D. radiodurans changes CD-spectrum of Z-form poly(dG-dC) X poly(dG-dC). We have found that a positive band at 268 nm is converted close to that of B-form in the presence of the protein. Concomitantly, a negative band at 295 nm shown by Z-form poly(dG-dC) X poly (dG-dC) was weakened by the protein but not by albumin. Such changes in the CD-spectra were not induced by the protein and by albumin when they were mixed with Z- or B-form poly(dG-me5dC) X poly(dG-me5dC) or with B-form poly(dG-dC) X poly(dG-dC). The protein formed a complex preferentially with Z-form poly(dG-dC) X poly(dG-dC).  相似文献   

20.
Mouse monoclonal antibody was elicited with 4-nitroquinoline 1-oxide (4NQO) modified poly(dG-dC).poly(dG-dC) and was characterized using enzyme-linked immunosorbent assay and radioimmunoassay. The antibody reacted specifically for 4NQO-poly(dG-dC).poly(dG-dC) but not for 4NQO modified DNA and synthetic polynucleotides such as poly(dG).poly(dC). The antibody crossreacted slightly with brominated or N-acetoxy-2-acetylaminofluorene modified poly(dG-dC).poly(dG-dC) known to adopt Z-conformation. The antibody may recognize unique conformational change in poly(dG-dC).poly(dG-dC) modified by 4NQO. The antibody should be useful for the detection of conformational change in DNA induced by chemical carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号