首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrPC) into a disease associated form (PrPSc). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrPC or a β-sheet rich, protease resistant form similar to PrPSc. Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrPSc from PrPC. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer’s, Huntington’s and Parkinson’s diseases.  相似文献   

3.
Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein–protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein–protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences.  相似文献   

4.
The ectopic expression of antibody fragments inside mammalian cells (intrabodies) is a challenging approach for probing and modulating target activities. We previously described the shuttling activity of intracellularly expressed Escherichia coli beta-galactosidase conferred by the single-chain Fv (scFv) fragment 13R4 equipped with nuclear import/export signals. Here, by appending to scFvs the proteolytic PEST signal sequence (a protein region rich in proline, glutamic acid, serine and threonine) of mouse ornithine decarboxylase, we tested whether short-lived or destabilized intrabodies could affect the steady-state level of target by redirecting it to the proteasomes. In the absence of antigen, the half-life of the modified scFv 13R4, relative to untagged molecules, was considerably reduced in vivo. However, after coexpression with either cytoplasmic or nuclear antigen, the destabilized 13R4 fragments were readily maintained in the cell and strictly colocalized with beta-galactosidase. Analysis of destabilized site-directed mutants, that were as soluble as 13R4 in the intracellular context, demonstrated that binding to antigen was essential for survival under these conditions. This unique property allowed specific detection of beta-galactosidase, even when expressed at low level in stably transformed cells, and permitted isolation by flow cytometry from a transfected cell mixture of those living cells specifically labeled with bound intrabody. Altogether, we show that PEST-tagged intrabodies of sufficient affinity and solubility are powerful tools for imaging the presence and likely the dynamics of protein antigens that are resistant to proteasomal degradation in animal cells.  相似文献   

5.
DNA-directed chemical ligations provide the opportunity to diagnose DNA sequences with very high sequence specificity. Fluorescent labels have been attached to reactive probes to enable the homogeneous detection of DNA and RNA. However, it has frequently been found that the attachment of fluorescent labels results in decreases of ligation fidelity. Herein we describe the development of a fluorogenic ligation reaction that provides for 10(2)-fold to perfect sequence selectivity. The reaction is based on the isocysteine-mediated native chemical PNA ligation. It is shown that DNA-induced rate accelerations of approximately 43.000-fold can be obtained through subtle variations of the ligation conditions. PNA-thioesters and isocysteine-PNA conjugates were labeled with FAM and TMR fluorophores, respectively. For gaining rapid synthetic access, a convenient on-resin labeling approach was developed. A new PNA monomer featuring an Alloc-protected lysine side chain was synthesized and coupled in solid-phase PNA synthesis. In the event of a ligation reaction the two fluorophores are brought into proximity. It is shown that fluorescence resonance energy transfer provides a positive fluorescence signal which is specific for product formation rather than for loss of starting materials. Single base mutations can be detected within minutes and with very high sequence selectivity at optimized conditions.  相似文献   

6.
We report upon a novel procedure to specifically isolate cysteine-containing peptides from a complex peptide mixture. Cysteines are converted to hydrophobic residues by mixed disulfide formation with Ellman's reagent. Proteins are subsequently digested with trypsin and the generated peptide mixture is a first time fractionated by reverse-phase high-performance liquid chromatography. Cysteinyl-peptides are isolated out of each primary fraction by a reduction step followed by a secondary peptide separation on the same column, performed under identical conditions as for the primary separation. The reducing agent removes the covalently attached group from the cysteine side chain, making cysteine-peptides more hydrophilic and, thereby, such peptides can be specifically collected during the secondary separation and are finally used to identify their precursor proteins using automated liquid chromatography tandem mass spectrometry. We show that this procedure efficiently isolates cysteine-peptides, making the sample mixture less complex for further analysis. This method was applied for the analysis of the proteomes of human platelets and enriched human plasma. In both proteomes, a significant number of low abundance proteins were identified next to extremely abundant ones. A dynamic range for protein identification spanning 4-5 orders of magnitude is demonstrated.  相似文献   

7.
Detection of phosphoproteins plays an important role in understanding protein function in cellular signalling pathways. Improved methods for identification and quantification of phosphoproteins are research priorities. Near-infrared (NIR) fluorescence detection of a γ-modified ATP-biotin analog was used to detect protein phosphorylation, using both model kinase substrates and mammalian cell lysates. NIR signal intensity was dependent on substrate and ATP-biotin concentrations.  相似文献   

8.
Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).  相似文献   

9.
It is known that human muscle acylphosphatase (AcP) is able, under appropriate conditions in vitro, to aggregate and form amyloid fibrils of the type associated with human diseases. A number of compounds were tested for their ability to bind specifically to the native conformation of AcP under conditions favoring denaturation and subsequent aggregation and fibril formation. Compounds displaying different binding affinities for AcP were selected and their ability to inhibit protein fibrillization in vitro was evaluated. We found that compounds displaying a relatively high affinity for AcP are able to significantly delay protein fibrillization, mimicking the effect of stabilizing mutations; in addition, the effectiveness of such outcome correlates positively to both ligand concentration and affinity to the native state of AcP. By contrast, the inhibitory effect of ligands on AcP aggregation disappears in a mutant protein in which such binding affinity is lost. These results indicate that the stabilization of the native conformation of amyloidogenic proteins by specific ligand binding can be a strategy of general interest to inhibit amyloid formation in vivo.  相似文献   

10.
Determination of the thiol-disulfide status in biological systems is challenging as redox pools are easily perturbed during sample preparation. This is particularly pertinent under neutral to mildly alkaline conditions typically required for alkylation of thiols. Here we describe the synthesis and properties of a thiol-specific reagent, fluorescent cyclic activated disulfide (FCAD), which includes the fluorescein moiety as fluorophore and utilizes a variation of thiol-disulfide exchange chemistry. The leaving-group character of FCAD makes it reactive at pH 3, allowing modification at low pH, limiting thiol-disulfide exchange. Different applications are demonstrated including picomolar thiol detection, determination of redox potentials, and in-gel detection of labeled proteins.  相似文献   

11.
Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein-protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein-protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences.  相似文献   

12.
13.
14.
A fluorescence polarization assay for native protein substrates of kinases   总被引:1,自引:0,他引:1  
Protein phosphorylation is the mediator of many important cellular processes of signal transduction and cell regulation. Phosphorylation often occurs on multiple sites within a single protein, whereby the results of individual phosphorylations are not well defined. This is partially due to the lack of tools for analyzing specific phosphorylation states in a quantitative manner. We have developed a high-throughput, rapid, and quantitative method for the determination of the phosphorylation status of peptides and, more importantly, native protein substrates of kinases using a competitive fluorescence-based approach. We have applied our method to measuring the phosphorylation activity of the Wee1 and Myt1 kinases. Our technique allows one to monitor the bis-phosphorylation status of the Cdk2 protein using an antibody specific for bis-phosphorylated Cdk2 and a fluorescently labeled bis-phosphorylated Cdk2 peptide. We have used this assay to screen a library of 16 general kinase inhibitors against Wee1 and Myt1 activity. None of the inhibitors inhibited Wee1, but both staurosporine and K-252a inhibited Myt1, with IC(50) values of 9.2+/-3.6 and 4.0+/-1.3 microM, respectively.  相似文献   

15.
Laser-induced native fluorescence detection with a KrF excimer laser (λ=248 nm) was used to investigate the capillary electrophoretic (CE) profiles of human urine, saliva and serum without the need for sample derivatization. All separations were carried out in sodium phosphate and/or sodium tetraborate buffers at alkaline pH in a 50-μm I.D. capillary. Sodium dodecyl sulfate was added to the buffer for micellar electrokinetic chromatography (MEKC) analysis of human urine. Although inherently a pulsed source, the KrF excimer laser was operated at a high pulse repetition rate of 553, 1001 or 2009 Hz to simulate a continuous wave excitation source. Detection limits were found to vary with pulse rate, as expected, in proportion to average excitation power. The following detection limits (3σ) were determined in free solution CE: tryptophan, 4 nM; conalbumin, 10 nM; α-lactalbumin, 30 nM. Detection limits for indole-based compounds and catecholamine urinary metabolites under MEKC separation conditions were in the range 7–170 nM.  相似文献   

16.
The first high-level production of a binding-active odorant binding protein is described. The expression cassette polymerase chain reaction was used to generate a DNA fragment encoding the pheromone binding protein (PBP) of the male moth Antheraea polyphemus. Transformation of Escherichia coli cells with a vector containing this construct generated clones which, when induced with isopropyl beta-D-thiogalactopyranoside, produced the 14-kDa PBP in both the soluble fraction and in inclusion bodies. Purification of the soluble recombinant PBP by preparative isoelectric focusing and gel filtration gave > 95% homogeneous protein, which was immunoreactive with an anti-PBP antiserum and exhibited specific, pheromone-displaceable covalent modification by the photoaffinity label [3H]6E,11Z-hexadecadienyl diazoacetate. Recombinant PBP was indistinguishable from the insect-derived PBP, as determined by both native and denaturing gel electrophoresis, immunoreactivity, and photoaffinity labeling properties. Moreover, the insoluble inclusion body protein could be solubilized, refolded, and purified by the same procedures to give a recombinant PBP indistinguishable from the soluble PBP. Proton NMR spectra of the soluble and refolded protein provide further evidence that they possess the same folded structure.  相似文献   

17.
Single-stranded guanine-rich (G-rich) DNA can fold into a four-stranded G-quadruplex structure and such structures are implicated in important biological processes and therapeutic applications. So far, bioinformatic analysis has identified up to several hundred thousand of putative quadruplex sequences in the genome of human and other animal. Given such a large number of sequences, a fast assay would be desired to experimentally verify the structure of these sequences. Here we describe a method that identifies the quadruplex structure by a single-stranded DNA binding protein from a thermoautotrophic archaeon. This protein binds single-stranded DNA in the unfolded, but not in the folded form. Upon binding to DNA, its fluorescence can be quenched by up to 70%. Formation of quadruplex greatly reduces fluorescence quenching in a K+-dependent manner. This structure-dependent quenching provides simple and fast detection of quadruplex in DNA at low concentration without DNA labelling.  相似文献   

18.
A new procedure for the photochemical functionalization and the subsequent nonradioactive labeling of synthetic oligonucleotides with psoralen derivatives was developed where a double-stranded poly(A-T) tail is attached to the 5'- or 3'-end of the oligonucleotide to be labeled. The double-stranded poly(A-T) tail is covalently crosslinked by psoralen molecules which carry reactive thiol or amino groups for the attachment of labels. A NH2-specific terbium chelate exhibiting long-lived fluorescence was attached to the functional groups of the intercalated psoralen molecules. Oligonucleotides substituted in this way hybridize readily and can be sensitively detected by time-resolved fluorescence measurements.  相似文献   

19.
Hydrogen peroxide is an important mediator in cell signalling and cell death. Apart from the mitochondrion the peroxisome is the most important cellular site for the generation and scavenging of hydrogen peroxide. Peroxisomes contain various oxidases, e.g. for the metabolism of long-chain fatty acids, polyamines, and for the oxidation of urate, which form hydrogen peroxide. Widely-used chemical probes for the detection of hydrogen peroxide like dichlorofluorescein diacetate (DCFDA) often lack in specificity and the possibility of compartment-specific measurement. To overcome these disadvantages, Belousov et al. developed the novel hydrogen peroxide sensitive fluorescent protein HyPer. In the present study the HyPer protein was fused with the PTS1 tag for a specific hydrogen peroxide detection in peroxisomes. The localization of the HyPer protein in the peroxisomes was confirmed by immunofluorescence and the functionality by fluorescence microscopy and flow cytometry analyses. The presented HyPer-Peroxi fluorescent protein is a valuable tool for studying hydrogen peroxide generation within the peroxisomes.  相似文献   

20.
A binding protein with apparent specificity for beta-glucuronidase has been partially purified from a Triton X-100 extract of rat liver microsomes by affinity chromatography on glucuronidase-Sepharose 2B. It appears that once removed from the membrane, this binding protein self-aggregates to form large macromolecular complexes. With the use of polyacrylamide gel electrophoretic and sucrose density gradient ultracentrifugation assays to monitor the conversion of glucuronidase tetramer to a very high molecular weight complex, it was shown that the binding activity is heatlabile and protease-sensitive. However, binding activity is not influenced by salts, carbohydrates, other proteins or glycoproteins, or by extensive periodate oxidation of beta-glucuronidase, nor does binding occur with any other protein tested. The binding protein does not discriminate against any form of beta-glucuronidase from any rat organ tested. However, the binding protein does show organ localization, being present in the liver and kidney but not the spleen. The possible relationship of this binding protein to egasyn, a membrane protein which stabilizes beta-glucuronidase in mouse liver endoplasmic reticulum, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号