首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The breakdown of cytoplasmic tubulin from brain (purified by ammonium sulfate fractionation and DEAE cellulose chromatography) by cathepsin D from brain (purified by ammonium sulfate fractionation and pepstatin Sepharose chromatography) was studied; changes in the intensity of tubulin gel bands were determined. The pH optimum of hemoglobin breakdown by cathepsin D was 3.2; the pH optimum for tubulin breakdown was 5.8; at pH 5.8 there was no significant hemoglobin breakdown by the enzyme. Tubulin breakdown had an apparent Km of 1.8 × 10−5 M and a Vmax of 0.56 μg tubulin (μg enzyme per min). The rate of breakdown was heterogeneous and studied on length of incubation; the major portion of tubulin was rapidly broken down and a smaller portion was more stable. The rate under our experimental conditions was 18%/h in the 1–4 h period and 2%/h after 4 h. This was not due to enzyme instability: after 4 h of inhibition freshly added tubulin was rapidly broken down, whereas freshly added enzyme did not increase the rate of breakdown. Thus breakdown heterogeneity was due to substrate (tubulin) heterogeneity. Pepstatin inhibited cathepsin D breakdown of tubulin at acid pH; at pH 7.6 it had no effect. Leupeptin was not inhibitory. We calculated that the cathepsin D content in brain, if fully active, could break down cytoplasmic tubulin with a half-life of 24 h, but it is likely that under in vivo conditions enzyme activity is greatly modified.  相似文献   

2.
In a continuing study of control processes of cerebral protein catabolism we compared the activity of cathepsin D from three sources (rat brain, bovine brain, and bovine spleen) on purified CNS proteins (tubulin, actin, calmodulin, S-100 and glial fibrillary acidic protein). The pH optimum was 5 for hydrolysis with tubulin as substrate for all three enzyme preparations, and it was pH 4 with the other substrates. The pH dependence curve was somewhat variable, with S-100 breakdown relatively more active at an acidic pH range. The formation of initial breakdown products and the further catabolism of the breakdown products was dependent on pH; hence the pattern of peptides formed from glial fibrillary acidic protein was different in incubations at different pH's. The relative activity of the enzyme preparations differed, depending on the substrate: with tubulin and S-100 as substrates, rat brain cathepsin D was the most active and the bovine spleen enzyme was the least active. With calmodulin and glial fibrillary acidic protein as substrates, rat brain and spleen cathepsin D activities were similar, and bovine brain cathepsin D showed the lowest activity. Actin breakdown fell between these two patterns.The rates of breakdown of the substrates were different; expressed as μg of substrate split per unit enzyme per h, with rat brain cathepsin D activity was 8–9 with calmodulin and S-100, 4 with glial fibrillary acidic protein, 1.8 with actin, and 0.9 with tubulin. The results show that there are differences in the properties of a protease like cathepsin D, depending on its source; furthermore, the rate of breakdown and the characteristics of breakdown are also dependent on the substrate.We recently measured the breakdown of brain tubulin by cerebral cathepsin D in a continuing study of the mechanisms and controls of cerebral protein catabolism (Bracco et al., 1982a). We found that tubulin breakdown is heterogeneous, that membrane-bound tubulin is resistant to cathepsin D but susceptible to thrombin (Bracco et al., 1982b), and that cytoplasmic tubulin was in at least two pools, one with a higher, another with a lower, rate of breakdown. The pH optimum of tubulin breakdown by cerebral cathepsin D differed significantly from the pH optimum of hemoglobin breakdown by the same enzyme.These findings showed that the properties of breakdown by a cerebral protease depend on the substrate. To further examine this dependence of properties of breakdown on the substrate, we now report measurements of pH dependence of breakdown of several purified proteins (tubulin, actin, calmodulin, S-100, glial fibrillary acidic protein [GFA]) from brain by cathepsin D preparations from three sources, rat brain, bovine brain, and bovine spleen. We also compare the rate of breakdown of the various proteins with the rate of hemoglobin breakdown.  相似文献   

3.
In recent studies we found that cytoplasmic tubulin from brain was rapidly split by brain cathepsin D. Two pools could be established; the major portion was split at 18%/h, a minor portion at 2%/h, under our experimental circumstances. In the present work these experiments were extended to membrane-bound tubulin from brain. The membrane-bound form, in contrast to the cytoplasmic tubulin, was not degraded by cerebral cathepsin D under similar experimental conditions. This was not due to the presence of an inhibitory protein since added cytoplasmic tubulin was degraded. Several other protein components of membrane fractions (synaptosomal, mitochondrial) were degraded by cathepsin D, as measured on two-dimensional electropherograms. Thrombin degraded cytoplasmic tubulin, but the degradation products differed from those of cathepsin D degradation. Thrombin also hydrolyzed membrane-bound tubulin, but at a lower rate than the cytoplasmic form. Our results indicate great differences in the breakdown rate of a protein, which depend on its localization, in accord with the differences found in in vivo turnover rates.  相似文献   

4.
Changes in Brain Protease Activity in Aging   总被引:2,自引:1,他引:1  
Abstract: We measured changes in protease activity with aging, conducting assays of cathepsin D and calpain II activities and the rate of degradation of cytoskeletal proteins, preparing the enzymes and substrates from young and aged brains. Calpain preparations added to the young and to the aged substrates were standardized with casein as substrate so that age-related changes in calpain specificity and substrate susceptibility were measured. Several age-related differences were observed in substrate susceptibility and in enzyme activity. With respect to substrate, the neurofilament protein from young animals was somewhat more susceptible to calpain action than that from older animals. With respect to enzyme activity, calpain from aged brain cleaved neurofilament protein at a faster rate than did calpain from young. With neurofilaments, the most rapid breakdown usually occurred when enzyme from aged tissue was incubated with substrate from young. Kidney enzyme of aged rats incubated with neurofilament substrate of aged rats resulted in a more rapid breakdown than enzyme of young kidney incubated with substrate of young. The age dependence of tubulin breakdown was somewhat different from that of neurofilament breakdown. The most rapid breakdown usually occurred when using enzyme from young with tubulin from young. Incubation of neurofilament protein or tubulin with cathepsin D did not reveal any differences with aging. These studies suggest that an increase in enzyme activity observed previously during aging may also include changes in the properties of the enzyme (substrate specificity) and/or in the properties of their endogenous substrates (susceptibility to breakdown).  相似文献   

5.
Proteolysis of Microtubule-Associated Protein 2 and Tubulin by Cathepsin D   总被引:3,自引:0,他引:3  
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and tubulin by the lysosomal aspartyl endopeptidase cathepsin D was studied. MAP-2 was very sensitive to cathepsin D-induced hydrolysis in a relatively broad, acidic pH range (3.0-5.0). However, at a pH value of 5.5, cathepsin D-mediated hydrolysis of MAP-2 was significantly reduced and at pH 6.0 only a small amount of MAP-2 was degraded at 60 min. Interestingly, the two electrophoretic forms of MAP-2 showed different sensitivities to cathepsin D-induced degradation, with MAP-2b being significantly more resistant to hydrolysis than MAP-2a. To our knowledge, this is the first clear demonstration that MAP-2 is a substrate in vitro for cathepsin D. In contrast to MAP-2, tubulin was relatively resistant to cathepsin D-induced hydrolysis. At pH 3.5 and an enzyme-to-substrate ratio of 1: 20, only 35% of the tubulin was degraded by cathepsin D at 60 min. The cathepsin D-mediated hydrolysis of tubulin was optimal only at pH 4.5. These results demonstrate that MAP-2 and tubulin are unequally susceptible to degradation by cathepsin D. These data also imply a potential for rapid degradation of MAP-2 in vivo by cathepsin D either in lysosomes or perhaps autophagic vacuoles of the neuron.  相似文献   

6.
The breakdown of the individual neurofilament proteins by cathepsin D   总被引:5,自引:0,他引:5  
In a continuing study of proteolysis of CNS proteins by CNS enzymes, neurofilament proteins (210 K, 155 K, 70 K) and desmin were separated, and the breakdown of individual proteins by purified brain cathepsin D was measured and compared to breakdown by plasma thrombin. With both cathepsin D and thrombin, the rate of breakdown of the 70 K protein was the highest, followed by the 155 K, and that of the 210 K was the lowest. With each substrate cathepsin D breakdown was the highest at pH 3; small but significant breakdown could be seen at pH 6. The pattern of intermediate breakdown products depended on pH, with greater amounts of fragments detected at higher pH, and the patterns with the two enzymes were different. We showed that differences exist in cleavage sites and breakdown rates of the neurofilament proteins. The capacity of the cathepsin D present in the tissue to hydrolyze these substrates was high, even at pH close to neutral, and was greatly in excess of that needed for physiological neurofilament turnover.  相似文献   

7.
A precursor form of cathepsin D with 45 kDa was demonstrated in the rat liver microsomal lumen by immunoblotting analysis. The microsomal fraction containing procathepsin D which passed through a pepstatin-Sepharose resin showed no appreciable activity of cathepsin D. The in vitro incubation of this fraction at pH 3.0 resulted in a gradual increase of proteolytic activity toward hemoglobin as substrate and also, the proteolytic conversion of procathepsin D to the mature form was concomitantly observed. The proteolytic processing step was sensitive to pepstatin. These results suggest that procathepsin D is inactive in the endoplasmic reticulum and may be converted to the active forms by autoproteolytic processing mechanism at acidic pH during biosynthesis.  相似文献   

8.
Alveolar macrophages are thought to play an important role in ongoing tissue breakdown and repair processes in the normal lung. The secretion and regulation of cathepsin D (important for the final breakdown of collagen) and fibronectin (involved in the healing process) in human peripheral blood monocytes (PBM) and pulmonary alveolar macrophages (PAM) were investigated. Cathepsin D enzyme activity was measured by quantitating the TCA-soluble fragments of [3H]hemoglobin. Freshly isolated PBM contained less cell-associated cathepsin D activity than did freshly isolated PAM (314 +/- 35 micrograms/10(6) cells vs 381 +/- 35 micrograms/10(6) cells, respectively). After 7-10 days in culture, cell-associated enzyme levels in both PBM and PAM were significantly increased (P less than 0.001 for PBM; P less than 0.0001 for PAM). In addition, freshly isolated PAM secreted more cathepsin D than did freshly isolated PBM (5.8 +/- 3.2 micrograms/10(6) cells vs 0.83 +/- 0.83 micrograms/10(6) cells, P less than 0.02). In the presence of LPS (10 micrograms/ml), cell-associated cathepsin D was inhibited in both PBM and PAM. With the addition of gamma-IFN (500 U/ml), both cell-associated and secreted enzyme were increased in freshly isolated and 10-day-cultured PBM and PAM. In parallel studies, fibronectin secretion (by ELISA assay) in both PBM and PAM increased over time in culture. LPS had no effect on PBM or PAM secretion of human fibronectin while gamma-IFN increased PBM and PAM fibronectin levels. Thus, both macrophage cathepsin D activity and fibronectin secretion are increased by gamma-interferon while macrophage cathepsin D activity, but not fibronectin secretion, is decreased by LPS. These studies demonstrate that human macrophage cathepsin D activity is actively modulated by inflammatory mediators and that macrophage mediators of tissue breakdown and repair are not modulated synchronously.  相似文献   

9.
The nature and levels of hemoglobin (Hb)-hydrolyzing acidic proteinases including cathepsin D and cathepsin E, which were most active at pH 3.5-4.0, were enzymatically and immunochemically compared between human and rat neutrophils. By subcellular fractionation and immunoprecipitation with discriminative antibodies specific for each enzyme, cathepsin D was shown to be present in the granular content fraction of both human and rat neutrophils and to account for about 35% of the total Hb-hydrolyzing activity. Cathepsin E was observed mainly in the cytoplasmic fraction of rat neutrophils from peripheral blood and peritoneal exudates and accounted for about 65% of the total activity, but it was not detected in human blood neutrophils. Immunoelectron microscopy on rat neutrophils revealed that cathepsin D was exclusively confined to lysosomes, whereas cathepsin E was localized mainly in the cytoplasmic matrix and often in the perinuclear spaces and the rough endoplasmic reticulum. The non-cathepsin D activity in human neutrophils, which represented about 65% of the total activity, appeared to be due to a serine proteinase, since it was inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride and was not inhibited by agents specific for aspartic-, cysteine-, or metallo proteinases. The enzyme(s) responsible for this activity was largely associated with the granular membranes, and a half of it could be described as an integral membrane protein on the basis of phase separation with Triton X-114 at 35 degrees C. The levels of these Hb-hydrolases in gingival crevicular fluid from human chronic inflammatory periodontitis patients were examined in order to clarify their participation in the periodontal tissue breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An extract of rat neutrophils was found to contain a high hemoglobin-hydrolyzing activity at pH 3.2, about 70% of which does not cross-react with anti-rat liver cathepsin D antibody. A neutrophil non-cathepsin D acid proteinase was successfully isolated from cathepsin D and characterized in comparison with the properties of rat liver cathepsin D. The neutrophil enzyme differed from cathepsin D in chromatographic and electrophoretic behaviors as well as immunological cross-reactivity, and its molecular weight was estimated to be 98,000 by gel filtration on Toyopearl HW 55. These findings strongly suggest that the neutrophil enzyme could be classified as cathepsin E. The enzyme, now designated rat cathepsin E, had an optimal pH at 3.0-3.2, preferred hemoglobin to albumin as substrate, and was markedly resistant to urea denaturation. Rat cathepsins D and E cleaved the insulin B-chain at six and eight sites, respectively; five sites were common for both enzymes. Possible relations among cathepsin E and cathepsin D-like or E-like acid proteinases reported so far were discussed.  相似文献   

11.
1. Renin was purified 30 000-fold from rat kidneys by chromatography on DEAE-cellulose and SP-Sephadex, and by affinity chromatography on pepstatinyl-Sepharose. 2. The enzymatic properties of isorenin from rat brain, pseudorenin from hog spleen, cathepsin D from bovine spleen, and renin from rat kidneys were compared: Isorenin, pseudorenin and cathepsin D generate angiotensin from tetradecapeptide renin substrate with pH optima around 4.9, renin at 6.0. With sheep angiotensinogen as substrate, isorenin, pseudorenin and cathepsin D have similar pH profiles (pH optima at 3.9 and 5.5), in contrast to renin (pH optimum at 6.8). 3. The angiotensin-formation from tetradecapeptide by isorenin, pseudorenin and cathepsin D was inhibited by albumin, alpha-and beta-globulins. These 3 enzymes have acid protease activity at pH 3.2 with hemoglobin as the substrate. Renin is not inhibited by proteins and has no acid protease activity. 4. Renin generates angiotensin I from various angiotensinogens at least 100 000 times faster than isorenin, pseudorenin or cathepsin D, and 3000 000 times faster than isorenin when compared at pH 7.2 with rat angiotensinogen as substrate. 5. The 3 'non-renin' enzymes exhibit a high sensitivity to inhibition by pepstatin (Ki less than 5.10(-10) M), in contrast to renin (Ki approximately 6-10(-7) M), at pH 5.5. 6. It is concluded from the data that isorenin from rat brain and pseudorenin from hog spleen are closely related to, or identical with cathepsin D.  相似文献   

12.
Changes in protein components of purified myelin were measured following incubation in vitro with purified intra- and extracellular enzymes. Incubation with calf brain cathepsin D did not result in a significant relese of acid-soluble peptides as measured by ninhydrin analysis but was accompanied by a large loss of myelin proteins as determined on SDS-acrylamide gels. After 5 hr at 37°C there was a loss of about 25% for fast and slow basic proteins and the Agrawal proteolipid, but only a 5–10% loss for the Folch-Lees and Wolfgram components. Rat brain cathepsin D prepared by affinity chromatography gave a 30–60% breakdown of basic proteins and proteolipids. In general, breakdown using lyophilized myelin was increased over two-fold as compared to experiments with fresh myelin. Breakdown induced by cathepsin D was completely inhibited by the pentapeptide pepstatin. Incubation of myelin at physiological pH resulted in an endogenous breakdown of about 12% for basic proteins in freshly prepared, and 50% for lyophilized material. Addition of a soluble neutral proteinase that splits hemoglobin did not induce additional breakdown except for a small change in the Folch-Lees component. The extracellular enzymes pepsin and TPCK-treated trypsin resulted in a larger breakdown of all components as compared to brain enzymes. Present results demonstrate that all protein components of myelin are accessible to hydrolases and vulnerable to breakdown to varying extents by brain enzymes. These facts are consistent with the known rates for myelin protein turnover and may have a bearing on changes associated with demyelinating diseases  相似文献   

13.
The catabolic degradation of hemoglobin and of its complex with haptoglobin by lysosomal enzymes from rat liver was studied with special emphasis on the action of cathepsins D and E. The digestion of free hemoglobin can be mainly attributed to the action of cathepsin D [EC 3.4.23.5], while the digestion of the complex in the pH rand 2-3 is due more to the action of cathepsin E than that of cathepsin D. The enzymic activities of both cathepsins were strongly inhibited by pepstatin, and 4M urea inactivated cathepsin E. Measurements of the peroxidase activity and optical rotatory dispersion of the hemoglobin-haptoglobin complex showed that the complex suffered rapid denaturation below pH 2.9.  相似文献   

14.
In a continuing study of the physiological role of protein breakdown in the hypothalamus, acid proteinase from bovine hypothalamus was purified about 1000-fold. The molecular weight of the enzyme was approximately 50,000. Maximal activity against hemoglobin was obtained at pH 3.2–3.5; serum albumin was split much more slowly. Hypothalamus acid proteinase was partially inhibited by -phenyl pyruvate, or benzethonium Cl, and was completely inhibited by low concentrations of pepstatin. This proteinase splits somatostatin, substance P, and analogs of substance P. The probable sites of enzyme action on these peptides were determined by the end group dansyl technique. The enzyme, most likely cathepsin D, may play an important role in the formation and breakdown of peptide hormones in the hypothalamus.  相似文献   

15.
Precursors of cathepsin D and beta-hexosaminidase were isolated from secretions of human fibroblasts and their activity was studied with natural substrates. The immunoprecipitated precursor of cathepsin D, Mr 53000, was inactive with radioactive hemoglobin as substrate. At pH 3.8-4.2 an activation of the precursor took place, which was correlated by a reduction in size to Mr 51500. The observed cleavage of cathepsin D precursor in vitro resembles the autocatalytic activation of pepsinogen. The precursor of beta-hexosaminidase A is able to cleave the natural substrate GM2 ganglioside. This reaction, like that of the mature enzyme, depends on the presence of a protein activator, which interacts with the substrate and the enzyme.  相似文献   

16.
An insoluble preparation of rat liver cathepsin D was obtained by coupling the enzyme to Enzacryl Polyacetal (EPA-cathepsin) and to CNBr-activated Sepharose 4B. EPA-cathepsin was active toward the synthetic hexapeptides (Gly-Phe-Leu)2 and did not split hemoglobin. The optimum pH of splitting was displaced upward by 1.5 units to pH 5.0. The enzyme exhibited maximum activity at 60 degrees C. No appreciable loss of activity was seen on storage of the enzyme for 4 months or after repeated use of the preparations. Coupling of rat liver cathepsin D to activated Sepharose gave preparations active towards both protein and synthetic substrates. The preparations were totally inactive in acid media and exhibited maximum activity at pH 7.0, that is, under physiological conditions. Optimum temperature was 65 degrees. The specific activity of the preparations (pH 7.0, 65 degrees) was 60-110 percent that of the free enzyme in acid media. Proteolytic activity of the Sepharose-coupled cathepsin D was not inhibited by pepstatin, whereas that of the free enzyme was fully inhibited by this reagent. A sarcoma cathepsin, similar in some of its properties to the rat liver enzyme, was also coupled to CNBr-activated Sepharose 4B. The preparation split protein substrates at pH 7.0 and possessed enhanced thermostability. The enzymes fixed on Sepharose showed increased stability.  相似文献   

17.
The partial purification of two intracellular proteinases from the protozoan parasite Entamoeba histolytica is reported. One of these enzymes is an acid proteinase exhibiting maximum activity at pH 3.5 (hemoglobin substrate), is little affected by a range of inhibitors or activators, and is presumed to be similar to cathepsin D. Also present is a neutral proteinase exhibiting optimum activity at pH 6.0 (azocasein) but only poorly hydrolyzing either hemoglobin or serum albumen. This latter enzyme displayed no metal ion requirement, but was markedly inhibited by thiol-blocking agents and activated by free sulhydryl-containing compounds.  相似文献   

18.
Proteases of the nematode Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate.  相似文献   

19.
The action and some properties of cathepsin D, partly purified from unfertilized loach eggs, embryos and skeletal muscles were determined. The enzyme from embryo cells displays the activity maximum at pH 3.0 and pH 4.8 while enzyme from skeletal muscles--only at pH 3.0. Cathepsin D purified from all three sources splits actively hemoglobin, albumin, alpha-glycerophosphate dehydrogenase, pyruvate kinase and practically does not influence casein, hexokinase, glucose-6-phosphate dehydrogenase. The enzyme is comparatively thermolabile and its activity decreases in the presence of thiol compounds. The main part of cathepsin D in skeletal muscle cells and in embryo cells is precipitated after differential centrifugation of homogenates (25000 g; 60 min).  相似文献   

20.
1. Antisera were raised against lysosomal cathepsin D of man, chicken and rabbit. 2. The antisera were found to be specific and potent inhibitors of cathepsin D activity. 3. The immunological nature of the inhibition was established. 4. The inhibitory effect was studied by varying pH, antiserum/enzyme ratio, time of incubation, concentration of components and order of mixing, and by using purified antibody and univalent antibody fragments. 5. The specificities of the antisera were examined with respect to other enzymes, isoenzymes of cathepsin D and cathepsin D from different organs. 6. The antisera prevented the action of cathepsin D on isolated proteoglycans and on cartilage. 7. The antisera produced up to 90% inhibition of the autolysis of cartilage from chicks and rabbits, indicating that cathepsin D is the enzyme mainly responsible for the breakdown of proteoglycans in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号