首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PLASMALOGENASE ACTIVITIES IN THE BRAINS OF JIMPY AND QUAKING MICE   总被引:1,自引:1,他引:0  
The activity of plasmalogenase, which hydrolyzes the vinyl ether linkage of the plasmalogen molecule, increased markedly in control mouse brains during the period of most active myelin deposition. Only a slight increase in plasmalogenase activity was found in brains from jimpy mice. At all ages studied, the jimpy mouse brains had less plasmalogenase activity than the littermate control brains and this disparity increased with increasing age. By 25 days of age the jimpy brains contained only 43% of the activity observed in control brains. Adult quaking mouse brains also had significantly less plasmalogenase activity when compared to littermate controls. Thus, the plasmalogenase activities correlate well with the degree of myelination.  相似文献   

2.
Effects of a glycoprotein synthesis inhibitor on myelination were investigated in rat cerebellum. The glycoprotein synthesis inhibitor, tunicamycin (TM), was injected intracranially into newborn rats. The activity of 2,3-cyclic nucleotide 3-phosphodiesterase (CNPase) in the cerebellum was significantly reduced in 2-week-old animals and was restored to the normal level by age 3 weeks. When TM was injected into newborn rats every 3–4 days for a total of 6 times, CNPase activity was still low at 3 and 4 weeks. Immunohistochemical stainings for CNPase and myelin-associated glycoprotein (MAG) were performed on paraffin sections of multiple-TM-injected cerebellum at 3 weeks. The intensity of the staining with MAG antiserum in the white matter was clearly decreased in TM-treated cerebellum compared with the control. The myelin in the granule cell layer was poorly stained with CNPase antiserum in TM-treated cerebellum. Subcellular fractionation was carried out and the CNPase activity in each fraction was measured. The CNPase activity in the myelin fraction (P2A) from the TM-treated cerebellum was significantly lower than that in the control. In contrast, the activity in the synaptosomal (P2B) and microsomal (P3) fractions from the multiple-TM-injected cerebellum was higher than in those from the controls. Polyacrylamide gel electrophoretic patterns of the P2A fractions were analyzed. The P2A fraction from TM-treated cerebellum contained less Wolfgram protein than the control. These results suggest that glycoprotein synthesis plays certain roles in myelination in the central nervous system.  相似文献   

3.
Abstract— The chemical composition of four parts of the CNS (cerebrum, cerebellum, brain stem and spinal cord) was determined in 107 pigs at 11 stages of fetal and postnatal development and also in 6 adults. In cerebrum, cerebellum and brain stem, but not in spinal cord, the rate of increase in weight and the rates of change in lipid content slowed down for a period of about 10 days before and after birth. Cholesterol esters and desmosterol were only found in progressively decreasing amounts during the fetal stages of development and together with DNA these were exceptions to the general increases in the tissue concentrations and total amounts of other components during the period studied.
The onset of myelination, as measured by calculated daily increases in tissue contents of cerebroside took place between 70 and 80 days conceptual age and there were two peaks of activity, the first occurring 2 weeks before and the second 3 weeks after birth. Unlike the rate curve for total spinal cord weight the biphasic accumulation of DNA was not synchronous with myelin lipid accretion and the earlier prenatal DNA peak probably denotes proliferation of oligodendrocytes. The two phases of myelination are discussed in relation to an observed generalized pause in development immediately before and after birth.
Fatty acid analysis of cerebrosides indicated that, in spinal cord, chain elongation and desaturation are associated with myelination and continue with increasing activity until maturity. Consequently there was a progressive decrease in the proportion of saturated fatty acids. The fatty acid components of cholesterol esters in the developing pig were shown to be similar to those found during development in the CNS of other species but different from those found in demyelinating conditions.  相似文献   

4.
(1) The chemical composition of the CNS (separated into cerebrum, cerebellum, brain stem and spinal cord) was determined in sheep during foetal and post-natal development and in adults. (2) The spinal cord differed from the remainder of the CNS in growing more after the period studied (50-day-old foetuses to 5-week-old lambs) than before it. This was largely attributable to lipid accumulation. (3) Chemical growth (accumulation of DNA, protein and lipid) proceeded linearly in spinal cord, logarithmically in cerebrum and cerebellum while in brain stem growth was described by a sigmoid function. (4) Fat-free dry matter, protein, total lipid, cholesterol and phospholipid concentrations increased progressively in all parts of the CNS but DNA concentrations changed little. In the cerebrum alone there was an increase in DNA concentration during maturation suggesting an increased cell population. Cholesterol was present predominantly in the free form but esters were detected in foetal tissues from 70 up to 120 days gestation. (5) Cerebroside, the characteristic lipid of myelin, increased in concentration soon after 85 days of gestation, up to which point very low values were recorded, the rate varying according to the region of the CNS examined. Rates of increase in total regional cerebroside content were used to identify periods of myelination and the results suggest that there are two periods of peak activity, one about 20 days before birth and the other at 10-20 days after birth. (6) The composition of lipids added during the two phases of myelination and during maturation were characteristically different. In the spinal cord, lipid analyses best reflect changes in myelin composition.  相似文献   

5.
Abstract: The developmental lipid profiles in the human cerebrum, cerebellum and brain stem are presented, with special reference to galactolipids as myelin markers to trace myelination in the three main parts of the human CNS. A group of undernourished children were also studied to test the vulnerability of myelinogenesis in the different regions of the human brain. Myelination was well advanced in the brain stem with regard to the other brain regions, a fact reflected in the much higher concentration of myelin lipids in the brain stem of the human foetus of 26 weeks of gestational age. The cerebrum, on the other hand, had the lowest galactolipid concentration during the prenatal period, galactolipid levels in the cerebellum being four times higher. From just before the end of gestation the accretion of galactolipids accelerated enormously in the cerebrum, whereas it slowed down considerably in the cerebellum. Consequently, in relation to prenatal levels galactolipids increased most rapidly in the cerebrum, followed by the cerebellum and finally by the brain stem. These regional differences were in clear contrast to data from the rat, as was the finding that only the cerebrum of undernourished children had a galactolipid concentration significantly decreased with respect to normal values. A relationship between the different myelination patterns in the human and the rat and the distinct vulnerability of myelinogenesis in the two species is suggested.  相似文献   

6.
Injection of pregnant rats with cytosine arabinoside (ara-C) (280 mg/kg) on day 15 of gestation caused a significant rise (about two times the control value) in monoamine concentrations (norepinephrine, dopamine, and serotonin) accompanied by a decrease (about 60% of the control) in the brain weight and DNA content in the cerebrum of the offspring at 60 days of age. When neonatal rats were injected with ara-C (30 mg/kg/day) for four consecutive days from the fourth to seventh days after birth, a decrease of DNA content per cerebellum and an elevation of monoamine concentrations in the cerebellum were found. However, the total content of each monoamine per cerebrum or cerebellum showed no difference from the control. These results suggest that monoaminergic neurons may remain intact, with normal monoaminergic synapses compressed into a small brain volume. The neonatal administration of ara-C caused an elevation of 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase) (EC 3.1.4.37) activity and myelin protein content in the cerebellum, suggesting a relative increase in myelin concentration as a result of hypoplasia of granule cells.  相似文献   

7.
The rate of hydrolysis of the 1-0-alkenyl group of sn-1-alk-1′-enyl-2-acyl-glycerylphosphorylethanolamine (alkenyl, acyl-GPE; ethanolamine plasmalogen) by plasmalogenase is higher in oligodendroglial cell-enriched fractions from bovine brain compared with fractions enriched in neuronal perikarya and astroglia. The distribution of plasmalogenase activity in membrane fractions isolated from bovine oligodendroglia has been compared with that of ‘marker’ enzymes. The highest specific activity was in a fraction enriched in plasma membranes, whilst most activity was recovered in an endoplasmic reticulum membrane fraction. In bovine oligodendroglial cell homogenates, the enzyme had a neutral pH optimum, had no requirement for divalent cations and its activity towards 1-alkenyl-GPE (lysoplasmalogen) was half that with alkenyl, acyl-GPE. C16 alkenyl groups were hydrolysed more rapidly than C18 alkenyl groups. With 3H-labelled alkenyl, acyl-GPE as substrate, radioactivity in released aldehydes appeared in fatty acids esterified in phospholipid while the oxidation of fatty aldehydes was blocked by the addition of NADH. An NAD-dependent aldehyde dehydrogenase was found to be present in oligodendroglia which exhibited highest activity towards C14C18 aldehydes (Km, 2 μM).  相似文献   

8.
Cytoskeletal preparation obtained from synaptosome fractions of rat cerebrum contained the activity of kinase C, which phosphorylated 17K Mr protein endogenous to the preparation. The kinase C activity associated with the synaptosome cytoskeletons is greater in the cerebellum and hippocampus than in the cerebrum. The enhancement rates of phosphorylation of the 17K Mr protein were 293%, 544%, and 526% in the Triton X-100-insoluble fractions of synaptosomes prepared from cerebral cortex, hippocampus, and cerebellum, respectively. The 17K Mr protein was distinct from myelin basic protein (MBP) for the following reasons: 1) The electrophoretic mobility of the protein was slightly smaller than that of major MBP of rat in the polyacrylamide gel of 10–20% linear gradient, and the protein was not contained in the purified rat myelin. 2) The isoelectric point of the protein was in neutral range, whereas that of MBP was in alkaline one. 3) The 17K Mr protein did not cross-react with anti-MBP antibody. The protein was shown to be a major substrate contained in the cytoskeletal preparation of synaptosome obtained from cerebrum except for contaminating MBP. Only serine residue of the 17K Mr protein was phosphorylated by the kinase C endogenous to the preparation. The results suggest strongly that the synaptic role of protein kinase C through phosphorylation of the 17K Mr protein.Abbreviations used EGTA ethyleneglycol-bis(-aminoethyl ether) - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - MBP myelin basic protein - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPM synaptic plasma membrane  相似文献   

9.

Introduction

This study investigates the effect of a modest weight loss either by a calorie restricted diet or mainly by increased physical exercise on health related quality of life (HRQoL) in overweight-to-obese and inactive postmenopausal women. We hypothesize that HRQoL improves with weight loss, and that exercise-induced weight loss is more effective for this than diet-induced weight loss.

Methods

The SHAPE-2 trial was primarily designed to evaluate any additional effect of weight loss by exercise compared with a comparable amount of weight loss by diet on biomarkers relevant for breast cancer risk. In the present analysis we focus on HRQoL. We randomly assigned 243 eligible women to a diet (n = 97), exercise (n = 98), or control group (n = 48). Both interventions aimed for 5–6 kg weight loss. HRQoL was measured at baseline and after 16 weeks by the SF-36 questionnaire.

Results

Data of 214 women were available for analysis. Weight loss was 4.9 kg (6.1%) and 5.5 kg (6.9%) with diet and exercise, respectively. Scores of the SF-36 domain ‘health change’ increased significantly by 8.8 points (95% CI 1.6;16.1) with diet, and by 20.5 points (95% CI 13.2;27.7) with exercise when compared with control. Direct comparison of diet and exercise showed a statistically significantly stronger improvement with exercise. Both intervention groups showed a tendency towards improvements in most other domains, which were more pronounced in the exercise group, but not statistically different from control or each other.

Conclusion

In a randomized trial in overweight-to-obese and inactive postmenopausal women a comparable 6%-7% weight loss was achieved by diet-only or mainly by exercise and showed improvements in physical and mental HRQoL domains, but results were not statistically significant in either the diet or exercise group. However, a modest weight loss does lead to a positive change in self-perceived health status. This effect was significantly larger with exercise-induced weight loss than with comparable diet-induced weight loss.

Trial Registration

ClinicalTrials.gov NCT01511276  相似文献   

10.
We studied DNA metabolism (synthesis and degradation) in brain to investigate the effect of hyperphenylalaninemia induced in rats by treatment with PCPA or MPA plus PHE during suckling (4th–20th days of postnatal age) on cell proliferation and naturally occurring cell death. The incorporation of14C in DNA as percent of total radioactivity in the tissue, 30 min after administration of [14C]thymidine served as a measure of DNA synthesis in vivo, and the amount of radioactivity recovered in DNA as percent of total14C in the tissues of 21 day old rats, injected with [14C]thymidine on 2nd day after birth, indicated the turnover (degradation) of DNA. The results showed that the DNA content of cerebellum as well as cerebrum was reduced by treatment with PCPA plus PHE, while treatment with MPA plus PHE had no effect on DNA content in cerebellum but reduced the levels in cerebrum. Treatment with PCPA or MPA plus PHE reduced the synthesis of DNA in cerebrum of 11 day old rats but not in 21 day old rats, and the treatments did not affect DNA synthesis in cerebellum of either 11 or 21 day old rats. The turnover (degradation) of DNA was increased in both cerebellum and cerebrum from rats treated with PCPA plus PHE but MPA plus PHE treatment did not alter the DNA turnover either in cerebellu or in cerebrum. The activity of acid DNase was reduced in both cerebellum and cerebrum from 11 as well as 21 day old rats treated with PCPA plus PHE, but the enzyme activity was not altered in the tissues from rats of both ages treated with MPA plus PHE. The data thus indicate that in rats treated with PCPA plus PHE the reduction in cerebral DNA levels occurs due to reduced synthesis and/or increased turnover (degradation) of DNA but that the reduction in cerebellar DNA may occur only as a result of increased turnover (degradation), and that in rats treated with MPA plus PHE the reduction in cerebral DNA must occur due to reduced synthesis. This suggests that treatment of rats with PCPA plus PHE during suckling inhibits cell proliferation and/or increases naturally occurring cell death in both cerebellum and cerebrum while treatment with MPA plus PHE inhibits only cell proliferation and in cerebrum alone.  相似文献   

11.
2′,3′-Cyclic-nucleotide-3′-phosphodiesterase activity was examined in several regions of rat brain during development, namely optic nerve, olfactory bulb, cerebrum, cerebellum, midbrain, brain stem, and spinal cord. From 4 to 120 days the total activity increased in all regions, although the specific activity approached a constant value in adults. The developmental profile of the enzyme appeared to correlate with the onset of myelination and with the levels of myelin basic protein as well as the appearance of galactocerebroside sulfotransferase. A correlation coefficient of 0.91 was found between total basic protein, expressed as the per cent of the adult (120 day) value, and total enzyme activity over 12–42 days of age (P < 0.001) from six different brain regions as well as for whole brain. By increasing the sensitivity of the assay with the use of [3H-8]adenosine 2′,3′-cyclic monophosphate, we were able to detect activity at birth in both whole brain and spinal cord.  相似文献   

12.
2,3-Cyclic nucleotide 3-phosphohydrolase activity in the cerebrum of the congenital goiter mouse (cog/cog) is reduced in comparison with the normal heterozygote (cog/+). The weight of thecog/cog cerebrum and cerebellum were significantly less than those of the normal controls, 89.0% less for the cerebrum, and 81.1% less for the cerebellum. However, no differences were observed with regard to DNA and RNA content and the RNA/DNA ratio. The results of this study indicate that hypomyelination in the congenital goiter mouse is restricted to the cerebrum, and is not related to arrested glial proliferation.  相似文献   

13.
Net sulfatide synthesis, galactosylceramide sulfotransferase (EC 2.8.2.11) and arylsulfatase A (EC 3.1.6.1) activities were measured in two brain regions, cerebrum and cerebellum, of normal and jimpy mice during postnatal development. In normally myelinating mice, two phases of increasing rates of net sulfatide synthesis were observed, the first coinciding with oligodendrocyte proliferation and the second with myelination. Net sulfatide synthesis was quantitatively higher in the cerebellum than in the cerebrum. In both brain regions, the developmental patterns of net sulfatide synthesis were related to the activity patterns of both galactosylceramide sulfotransferase and arylsulfatase A. In jimpy mice, a neurological mutant showing hypomyelination in brain, the first phase of net sulfatide synthesis was preserved in both brain regions and galactosylceramide sulfotransferase and arylsulfatase A activities were normal up to 12 days. However, during the phase in which myelination occurred in controls, the net sulfatide synthesis in both brain regions of jimpy mice was zero or even negative. The sulfatide deficit was larger in the cerebellum than in the cerebrum. In both mutant brain parts, galactosylceramide sulfotransferase activity increased up to 12 days showing about 50% of the maximal activities observed in normal brain regions. Thereafter up to 15 days, enzyme activity decreased to about 25% of that of controls and remained low in both brain regions. The developmental patterns and the activities of arylsulfatase A were, however, normal in the cerebrum and cerebellum of jimpy mice. These results suggest that the enzyme activities and the developmental patterns of galactosylceramide sulfotransferase and arylsulfatase A as measured in vitro reflect to a high degree their functional activity in vivo. Furthermore, sulfatide degradation by arylsulfatase A seems to be important in regulating net sulfatide synthesis during normal and impaired myelination.  相似文献   

14.
This study was carried out to investigate the effects of lithium (Li) supplementation on aluminium (Al) induced changes in antioxidant defence system and histoarchitecture of cerebrum and cerebellum in rats. Al was administered in the form of aluminium chloride (100 mg/kg b.wt./day, orally) and Li was given in the form of Li carbonate through diet (1.1 g/kg diet, daily) for a period of 2 months. Al treatment significantly enhanced the levels of lipid peroxidation and reactive oxygen species in both the cerebrum and cerebellum, which however were decreased following Li supplementation. The enzyme activities of catalase, superoxide dismutase (SOD) and glutathione reductase (GR) were significantly increased in both the regions following Al treatment. Li administration to Al-fed rats decreased the SOD, catalase and GR enzyme activities in both the regions; however, in cerebellum the enzyme activities were decreased in comparison to normal controls also. Further, the specific activity of glutathione-s-transferase and the levels of total and oxidized glutathione were significantly decreased in cerebrum and cerebellum following Al treatment, which however showed elevation upon Li supplementation. The levels of reduced glutathione were significantly decreased in cerebrum but increased in cerebellum following Al treatment, which however were normalized upon Li supplementation but in cerebellum only. Apart from the biochemical changes, disorganization in the layers of cerebrum and vacuolar spaces were also observed following Al treatment indicating the structural damage. Similarly, the loss of purkinje cells was also evident in cerebellum. Li supplementation resulted in an appreciable improvement in the histoarchitecture of both the regions. Therefore, the study shows that Li has a potential to exhibit neuroprotective role in conditions of Al-induced oxidative stress and be explored further to be treated as a promising drug against neurotoxicity.  相似文献   

15.
The activity of UDP-galactose: hydroxy fatty acid containing ceramide galactosyltransferase was studied in the myelin and microsomal fractions of rat cerebral hemispheres, cerebellum and spinal cord during development. In all three regions, the specific activity of the enzyme reached a maximum in myelin prior to that in the microsomal membranes. This temporal relationship between myelin and microsomal fraction was similar in all the three regions, although the overall timing was shifted corresponding to known differential timing of myelin deposition in these regions. The activity of the enzyme from both the membranes, during development, increased in parallel with temperature up to 45°C. Specific localization of galactosyltransferase in early myelin may suggest specific role of the enzyme in the myelination process.  相似文献   

16.
17.
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme 1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.  相似文献   

18.
Fifty-six castrated male progeny of crossbred (Chester White x Landrace x Large White x Yorkshire) dams fed an adequate diet (control, C), a control diet fed at one-third of C (restricted, R), or diets severely deficient in protein (PF) or restricted in nonprotein calories (RCal) were killed at age 25 weeks. Dams were fed their respective diets in the following regimens: C, 1.8 kg (6000 kcal daily) throughout pregnancy; R, 0.6 kg of C diet daily for 70 days, then 1.8 kg of C daily to parturition at about 114 days; PF, 1.8 kg of a "protein-free" diet (less than 0.2% protein) throughout pregnancy; RCal, 0.6 kg daily (2000 kcal) of a diet containing three times the concentration of protein, minerals, and vitamins provided by the C diet for 70 days, then 1.8 kg of C daily to parturition. All dams were fed an adequate diet ad libitum through a 28-day lactation. Castrated male progeny were assigned to one of two replicates based on birth date and fed a corn-soybean meal diet ad libitum from weaning to age 25 weeks, supplemented from age 10 to 12 weeks with 0, 110, or 220 mg/kg of thyroprotein (iodinated casein). Cerebrum weight was unaffected by maternal diet, despite a significant (P less than 0.001) reduction in body weight of progeny of PF dams compared with other groups, resulting in a higher relative cerebrum weight in progeny of PF dams than in progeny of C, R, and RCal dams. Absolute and relative weights of RNA, DNA, and total protein in cerebrum were unaffected by maternal diet. Thyroprotein supplementation to the diet of the progeny had no effect on cerebrum weight or its protein or nucleic acid content. It is concluded that maternal protein deprivation but not restriction of feed or nonprotein calorie intake to one-third of recommended allowance during gestation results in stunting of body weight in young adult progeny but does not affect cerebrum weight, cerebrum cell number (DNA), or protein synthetic activity (RNA), or RNA-to-protein ratio.  相似文献   

19.
Pyrithiamine, a thiamine phosphokinase inhibitor, was fed to rats on a thiamine-deficient diet, producing weight loss, ataxia and loss of righting reflex in 10 days. Some rats were then sacrificed; others were returned to a normal diet, to be sacrificed only when their weight had returned to pre-experimental levels. Rats were sacrificed for assay of glutamic acid decarboxylase (GAD) and choline acetyltransferase (ChAT) activities in homogenates of eight brain regions or were perfused for -aminobutyric acid transaminase (GABA-T) histochemistry. GAD activity was significantly reduced in symptomatic rats in the thalamus > cerebellum > midbrain > pons/medulla. GABA-T staining was similarly reduced, with greatest losses in the thalamus > inferior colliculus > pons > medulla. ChAT activity was not significantly altered in any brain area. Following return to a normal diet, GAD activity was significantly recovered in all areas except the thalamus. GABA-T staining recovered, at least partially, in all areas affected.  相似文献   

20.
We studied metabolism of brain DNA in three myelin deficient mutants qk, jp and jpmsd mice. The DNA content, the in vivo incorporation of [14C]thymidine in DNA and the activity of acid DNase in tissues (cerebellum and cerebrum) from normal littermates and affected mice were compared. The results showed that neither the DNA content, the incorporation of [14C]thymidine in DNA nor the activity of acid DNase in brain were altered in qk affected mice. In jpmsd mice, however, the DNA content as well as the incorpation of thymidine in DNA were reduced in both cerebellum and cerebrum, but the activity of acid DNase was reduced in cerebrum only. In jp mice, although the DNA content was reduced in both cerebellum and cerebrum, the incorporation of thymidine in DNA and the activity of acid DNase were reduced in cerebrum only. The data suggest a) that in qk mutants DNA metabolism and hence cell (glial) proliferation is not affected; b) that in jpmsd mutants DNA synthesis, and thus the cell proliferation is reduced in cerebellum as well as in cerebrum of the affected mice and c) that in jp mutants the synthesis of DNA and the cell proliferation is reduced in cerebrum but not in cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号