首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 5-day-old etiolated Sorghum seedlings, red light irradiationfor 1 s enhanced carotenoid and chlorophyll accumulation, and5 min of red light treatment saturated the photoresponse. Thedegree of red/far-red photoreversibility of carotenoid accumulationwas dependent on the age of the plant. No significant escapefrom far-red reversibility was observed up to 30 min after theonset of a saturating red light pulse in 5-day-old etiolatedseedlings. Thereafter, the escape was relatively fast and completedwithin 180 min. Sorghum bicolor L, carotenogenesis, phytochrome, time dependence, chlorophyll synthesis  相似文献   

2.
The photometric method was used to test a possibility proposed recently that a new photoreceptor with maximum activity at 620 nm is involved in mediating chloroplast rotation in Mougeotia (Z Lechowski, J Bialczyk [1988] Plant Physiol 88: 189-193). The hypothesis was tested under conditions of continuous dichromatic unilateral or mutually perpendicular irradiation with red light of wavelengths 620 or 660 (680) nanometers and far-red. When the red light was polarized parallel to the long cell axis, chloroplast response could be monitored by changing the direction of far-red irradiation. The level of the response obtained with red and far-red applied from the same direction depended on far-red intensity: at higher fluence rates the maximum response was shifted to longer wavelengths of red light. A high fluence rate of far-red inhibited the response. The absorption coefficients of Mougeotia chloroplasts were measured for the studied wave-lengths using the microphotometric method. Possible impact of absorption by the chloroplast on photoreception has been discussed. Current and previous results can be interpreted in terms of phytochrome action and do not support the involvement of the hypothetical 620 nanometer photoreceptor.  相似文献   

3.
  1. Spores of the fern Pteris vittata did not germinate under totaldark conditions, while an exposure of the spores to continuouswhite light brought about germination. The germination was mosteffectively induced by red light and somewhat by green and far-red,but not at all by blue light. The sensitivity of spores to redlight increased and leveled off about 4 days after sowing at27–28. The promoting effect of red light could be broughtabout by a single exposure of low intensity. Far-red light givenimmediately after red light almost completely reversed the redlight effect, and the photoresponse to red and far-red lightwas repeatedly reversible. The photoreversibility was lost duringan intervening darkness between red and far-red irradiations,and 50% of the initial reversibility was lost after about 6hr of darkness at 27–28. These observations suggest thatthe phytochrome system controls the germination of the fernspore.
  2. When the imbibed spores were briefly exposed to a low-energyblue light immediately before or after red irradiation, theirgermination was completely inhibited. The blue light-inducedinhibition was never reversed by brief red irradiation givenimmediately after the blue light. The escape reaction of redlight-induced germination as indicated by blue light given aftervarious periods of intervening darkness was also observed, andits rate was very similar to that determined by using far-redlight. Spores exposed to blue light required 3 days' incubationin darkness at 27–28 to recover their sensitivity tored light. The recovery in darkness of this red sensitivitywas temperature-dependent. It is thus suggested that an unknownbluelight absorbing pigment may be involved in the inhibitionof phytochrome-mediated spore germination.
(Received August 21, 1967; )  相似文献   

4.
The light requirement for germination in spores of the fern Thelypteris kunthii (Desv.) Morton was fully satisfied by a long period of continuous red light or partially by intermittent, short periods of red light. Red light-potentiated spore germination was inhibited by brief far-red light irradiation, indicating phytochrome involvement. Repeated exposure of spores to prolonged red and short far-red irradiations, or exposure of red-potentiated spores to far-red light after an extended period in darkness, led to their escape from inhibition of germination by far-red light. Prolonged irradiation of spores with blue light before or after red light treatment partially antagonized the effect of red light.  相似文献   

5.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

6.
In non-growing two-celled protonemata of Adiantum capillus-veneris,apical growth was induced most effectively by red light irradiation;half of the samples were induced to grow by 660 nm light ofca. 1.5 J m–2 and the maximum number by ca. 70 J m–2.The reciprocity law was valid in this photoinduction. The growthresumption became detectable 6 hr after the light irradiationand reached a plateau within 24 hr irrespective of given fluences.When non-growing samples were irradiated with red light of 4.6W m–2 for 4 sec or shorter, the effect was fully reversedby a subsequent irradiation with far-red light to the far-redlight control level. But, when the red light was given for 16sec or longer, photoreversibility became partial. An interveningdark period of 2 min between red and far-red light did not significantlyinfluence the photoreversibility so that the escape reactionin the dark may not be attributed to the above-mentioned lossof photoreversibility. By means of a local irradiation with a narrow red light beam(10 µm in width), the apical cell was found to be photosensitivefor the growth induction, but basal cell was not. Photoreceptivesite was not localized in any particular region of the apicalcell, but was rather dispersed in the entire apical cell. (Received January 26, 1981; Accepted March 10, 1981)  相似文献   

7.
Continuous irradiation of Mougeotia with linearly polarized green light (550 nanometers, 0.2 watt per square meter) induces a change in the orientation of its chloroplast from profile to face position, if the electrical vector of the green light is vibrating normal to the cell axis. This change is complete within 25 minutes of the onset of irradiation. In contrast, if the electrical vector of the green light is parallel to the cell axis, no chloroplast reorientation is induced, even with a fluence rate as high as 3 watts per square meter. Furthermore, unpolarized far-red light (727 nanometers, 2 watts per square meter) given alone has no effect on chloroplast reorientation. Simultaneous and continuous irradiation with polarized green light, regardless of its plane of polarization, together with unpolarized far-red light, however, does lead to chloroplast reorientation. These data indicate that, in addition to the red-absorbing form of phytochrome, there exists in Mougeotia another sensory pigment absorbing green light.  相似文献   

8.
Eckard Wellmann 《Planta》1971,101(3):283-286
Summary Ultraviolet light was demonstrated to stimulate flavone glycoside synthesis in Petroselinum cell suspension cultures. The data presented suggest the involvement of phytochrome in this response: Flavone glycoside formation resulting from 1 h of ultraviolet irradiation was increased by subsequent continuous far-red light irradiation. However, the ultraviolet effect was reduced by a subsequent irradiation with 10 min of far-red. This far-red effect was fully reversed by a sub-sequent irradiation with 10 min of red. Red and far-red irradiations were ineffective without ultraviolet preirradiation. It is concluded that in this system ultraviolet irradiation is required in order to change the cells in such a way as to allow a physiological effectiveness of the phytochrome system.  相似文献   

9.
The orientation of chloroplasts from profile to face position in Mougeotia can be controlled in two ways: by a typical phytochrome-mediated system or by continuous, simultaneous irradiation with far-red and visible light. In experiments with dichromatic irradiation of Mougeotia, the light conditions applied prevented the formation of a far-red-absorbing form of phytochrome gradient in the cell. An unpolarized background of far-red light and linearly polarized monochromatic light of different wavelengths and vibrating parallel to the cell axis, if given by themselves, were completely ineffective in producing any changes in chloroplast orientation. Given together, however, changes in chloroplast orientation were induced. The action spectrum for this interaction between constant far-red and variable visible light was maximal at 620 nanometers. The chloroplast response in these dichromatic light conditions required a prolonged duration of exposure to simultaneous continuous irradiation of high fluence energy. The vibrating plane of linearly polarized 620 nanometer light had no significant influence on interaction with far-red light in chloroplast movement. The results obtained are different from the typical low energy phytochrome-mediated chloroplast orientation. This new type of chloroplast photoresponse might be mediated by an unknown sensory pigment.  相似文献   

10.
A brief red light pretreatment (pulse), operating through phytochrome, stimulates the synthesis of chlorophyll a and b in Sorghum vulgare shoots that are placed in continuous saturating white light. The red light effect is fully reversible by a far-red (756 nanometers) light pulse for 45 minutes. Thereafter, escape from reversibility is fast, being completed within 2 hours. It is shown here that physiologically active phytochrome (Pfr) is required continuously during these first 45 minutes if the onset of the loss of photoreversibility is to begin 45 minutes after the red light treatment. Thus, the initial action of Pfr consists of two distinct processes: the first process is to overcome the lag prior to escape from photoreversibility; the second process is the actual stimulation of chlorophyll synthesis by Pfr. The duration of the lag prior to escape from photoreversibility depends on the level of Pfr established by the light pulse. The duration increases with increasing Pfr levels from nondetectable to 45 minutes. Above approximately 15% Pfr (Pfr/Plot ≈ 0.15), the duration of the lag prior to escape from photoreversibility remains constant at 45 minutes.  相似文献   

11.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):121-127
The results reported in this paper provide strong evidence to support the belief that the small percentage of phytochrome recovered in low-speed centrifugation pellets, when prepared in the absence of divalent cations after various in vivo irradiations, is not simply a manifestation of non-specific co-precipitation of soluble phytochrome.The far-red reversibility of the observed near-doubling of phytochrome pelletability after in vivo red irradiation indicates that phytochrome pelletability in the absence of divalent cations is a phytochrome-controlled response. The characteristics of the pelleted phytochrome indicate a strong, hydrophobic interaction with membranes. A tentative proposal to explain the observed characteristics of the association of phytochrome with membranous material in the absence of divalent cations after different in vivo irradiations has been put forward.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the fat-red light absorbing form - Ptot total phytochrome - R red light irradiation - FR far-red light irradiation  相似文献   

12.
Measuring the ratio of the number of photooriented chloroplaststo the total number of chloroplasts, we found that photoorientationof chloroplasts in protonemata of the fern Adiantum capillus-veneriscould be induced by brief irradiation with polarized red light.After irradiation with red light (R) of 3 or 10 min, orientationalmovement was detected as early as 10 min after the irradiation;it continued during the subsequent dark period for 30–60min, after which chloroplasts gradually dispersed again. WhenR-treated protonemata were irradiated briefly with a second10-min pulse of R, 60 min after the onset of the first irradiation,the orientational response of chloroplasts was again observed.Typical red/far-red photoreversibility was apparent in the response,indicating the involvement of phytochrome. By contrast, irradiationwith polarized blue light for 10 min was ineffective, whileirradiation with blue light (B) at the same fluence for a longerperiod of time clearly induced the photoorientation of chloroplasts.It is likely that longterm irradiation is necessary for theresponse mediated by a blue-light receptor. When protonemata were irradiated with far-red light (FR) immediatelyafter R or after a subsequent dark period of 10 min, the magnitudeof the orientational response was smaller and chloroplasts dispersedmore quickly than those exposed to R alone. When FR was appliedat 50 min, when the response to R had reached the maximum level,chloroplasts again dispersed rapidly to their dark positions.These results indicate that PFR not only induces the photoorientationmovement of chloroplasts but also fixes the chloroplasts atthe sites to which they have moved as a result of photoorientation. (Received June 2, 1993; Accepted January 11, 1994)  相似文献   

13.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

14.
The action spectra for K+ channel activation and chloroplast rotation are shown to be similar. Both phenomena exhibit activation at 660 nanometers, inhibition at 740 nanometers, and partial activation at 460 to 500 nanometers. This confirms that K+ channels in Mougeotia are regulated by phytochrome, and indicates that both phenomena share at least part of the same transduction pathway.  相似文献   

15.
Seed germination of an aurea mutant of tomato ( Lycopersicon esculentum Mill.) is promoted by continuous irradiation with red, far-red or long-wavelength far-red (758 nm) light as well as by cyclic irradiations (5 min red or 5 min far-red/25 min darkness). Far-red light applied immediately after each red does not change the germination behaviour. Seed germination of the isogenic wild-type, cv. UC-105, is promoted by continuous and cyclic red light while it is inhibited by continuous and cyclic far-red light and by continious 758 nm irradiation. Far-red irradiation reverses almost completely the promoting effect of red light. The promoting effect (in the aurea mutant) and the inhibitory effect (in the wild-type) of continuous far-red light do not show photon fluence rate dependency above 20 nmol m−2 s−1. It is concluded that phytochrome controls tomato seed germination throgh low energy responses in both the wild type and the au mutant. The promoting effect of continuous and cyclic far-red light in the au mutant can be attributed to a greater sensitivity to Pfr.  相似文献   

16.
Abstract. Three responses (mesocotyl and coleoptile elongation and anthocyanin accumulation in the coleoptile) to end- of-day far-red irradiation in light-grown corn show rapid failure of the reciprocity law such that short, high fluence rate irradiations are much more effective than long, low fluence rate ones of the same fluence (reverse reciprocity failure). The reciprocity failure cannot be explained by escape from photoreversibility, a change in sensitivity to Pfr, reciprocity failure for photoconversion, or a high irradiance response taking over for long irradiation times. Fluence–response curves measured by varying irradiation time at a low fluence rate show the threshold fluence shifted to higher energy in comparison with fluence–response curves obtained at a high fluence rate. Red reversal of these responses also shows rapid reciprocity failure in the same direction, a process which can be only partially explained by escape. These responses to end-of-day far-red and red illumination are distinguished from high irradiance reactions by their low fluence requirements and ready reversibility. These same characteristics are similar to those of classical phytochrome- mediated, induction-reversion responses in etiolated tissue, but it is difficult to explain the rapid, reverse reciprocity failure in terms of standard phytochrome dogma.  相似文献   

17.
Chloroplast orientation in the green alga Mougeotia has been induced by unidirectional red or blue light, given continuously during one hour. In addition, part of the preparations obtained scattered strong far-red light simultaneously with the orienting light. This far-red light completely abolished the response to red light, consistent with phytochrome as the sensor pigment for orientation in Mougeotia. In blue light, however, the response was completely insensitive to far-red light, thus pointing to a different sensor pigment in the shortwavelength region.Abbreviation Pfr far-red-absorbing form of phytochrome  相似文献   

18.
K. Zandomeni  P. Schopfer 《Protoplasma》1993,173(3-4):103-112
Summary The effects of red and blue light on the orientation of cortical microtubules (MTs) underneath the outer epidermal wall of maize (Zea mays L.) coleoptiles were investigated with immunofluorescent techniques. The epidermal cells of dark-grown coleoptiles demonstrated an irregular pattern of regions of parallel MTs with a random distribution of orientations. This pattern could be changed into a uniformly transverse MT alignment with respect to the long cell axis by 1 h of irradiation with red light. This response was transient as the MTs spontaneously shifted into a longitudinal orientation after 1–2 h of continued irradiation. Induction/reversion experiments with short red and far-red light pulses demonstrated the involvement of phytochrome in this response. In contrast to red light, irradiation with blue light induced a stable longitudinal MT alignment which was established within 10 min. The blue-light response could not be affected by subsequent irradiations with red or far-red light indicating the involvement of a separate blue-light photoreceptor which antagonizes the effect of phytochrome. In mixed light treatments with red and blue light, the blue-light photoreceptor always dominated over phytochrome which exhibited an apparently less stable influence on MT orientation. Long-term irradiations with red or blue light up to 6 h did not reveal any rhythmic changes of MT orientation that could be related to the rhythmicity of helicoidal cell-wall structure. Subapical segments isolated from dark-grown coleoptiles maintained a longitudinal MT arrangement even in red light indicating that the responsiveness to phytochrome was lost upon isolation. Conversely auxin induced a transverse MT arrangement in isolated segments even in blue light, indicating that the responsiveness to blue-light photoreceptor was eliminated by the hormone. These complex interactions are discussed in the context of current hypotheses on the functional significance of MT reorientations for cell development.Abbreviations MT cortical microtubule - Pr, Pfr red and far-red absorbing form of phytochrome  相似文献   

19.
In photoresponses regulated by phytochrome the effect of a red irradiation is not always reversed by far-red. This applies for instance to the influence of red light on the geotropic reactions of Avena coleoptiles. We could induce red/far-red reversibility by a short de-etiolating exposure to red light about 20 h prior to the experimental irradiations. This, was due to a decrease of the sensitivity to the low level of the far-red absorbing form of phytochrome that is established by far-red. Since etiolated plants react also to a wavelength of 520 nm (green light), it is advisable to expose the coleoptiles to a de-etiolating irradiation prior to manipulations in green safelight in order to prevent the plants from reacting to the green light.  相似文献   

20.
The alga Mougeotia has a large central chloroplast whose positioning is regulated by photoactivation of phytochrome, possibly via modulation of cytosolic calcium (Serlin B, Roux SJ [1984] Proc Natl Acad Sci USA 81: 6368-6372). We used the patch clamp technique to examine the effects of red and far-red light on ion channel activity in the plasma membrane of Mougeotia protoplasts to determine if ion channels play a role in chloroplast movement. Patch clamping in the cell-attached mode reveals two channels of about 2 and 4 picoamperes amplitude at 0 millivolt (inside pipette) and estimated conductances of 30 and 65 picosiemens. They are activated by red light irradiation after a lag period of about 2 to 5 minutes. Far-red light, when applied immediately after red light irradiation, reverses this activation; otherwise it has no effect. This result implicates phytochrome. The addition of the calcium ionophore, A23187, also activates ion channel activity after a lag of a few minutes. The channels are not specific for calcium since they are present when calcium is removed from the external and pipette media. They are inhibited by quaternary ammonium ions. Thus, we believe they are calcium-activated potassium channels. Their possible role in chloroplast positioning is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号