首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
31P-Nuclear-magnetic-resonance spectra of maize (Zea mays L.) root tips, that had been induced to extrude large amounts of H+ in response to fusicoccin (FC) in the presence of potassium salts, indicate that the cytoplasmic pH does not become higher than that of controls. In fact, the cytoplasmic pH may become slightly (approx. 0.1 pH unit) lower in cells extruding H+. Estimations of the buffer capacity of the cells show that without active intracellular pH regulation, H+ extrusion caused by FC would cause the intracellular pH to rise by at least 0.6 pH unit h-1. Our results indicate that intracellular pH is tightly regulated even during extreme rates of acid extrusion, and that a rise in cytoplasmic pH is not the signal linking H+ extrusion with enhanced organic-acid synthesis or other intracellular responses to H+ pumping.Abbreviations FC fusicoccin - Pi inorganic phosphate - NMR nuclear magnetic resonance - chemical shift - MDP methylene diphosphonic acid  相似文献   

3.
Using 31P nuclear magnetic resonance spectroscopy, we followed cytoplasmic and vacuolar pH in pea (Pisum sativum cv Alaska) internode segments during treatment with indoleacetic acid (IAA) or fusicoccin (FC) in continuously perfused, oxygenated buffer. Although IAA and FC induced normal H+ extrusion, elongation, and glucan synthase activity responses during the measurements, neither the cytoplasmic nor the vacuolar pH showed significant change at any time between 5 minutes and 1 to 3 hours of treatment. Changes in cytoplasmic pH as small as about 0.04 pH unit were detected after treatment with 1-naphthyl acetate. Therefore, cytoplasmic pH changes do not appear to mediate IAA or FC stimulation of H+ extrusion or other metabolic responses to these effectors.  相似文献   

4.
Measurements of H+ extrusion activity K+ influx, and Es bm in 3-d-old seedlings of the 5-2 mutant of Arabidopsis thaliana (which is partially insensitive to fusicoccin) showed the following, (i) The reduced response of 5-2 to fusicoccin (FC) does not depend on the penetration of FC to its site of action, or on decreased affinity of the FC receptor, (ii) The reduced response of H+ and K+ transport to FC does not depend on an impairment of the K+ absorption system, (iii) The mutation can influence the H+ extrusion system independently of the presence of FC. In the presence of factors other than FC known to activate the plasma membrane H+-ATPase (e.g. a cytosol-acidifying treatment), the response in 5-2 is about 50% lower than in wt. (iv) When both genotypes grow in optimal conditions, the rate of fresh weight increase and stem elongation is higher in wt than 5-2. These data indicate that the 5-2 mutation affects some intrinsic component of the H+-extrusion machinery, the limiting effect of which becomes considerable when either the physiological or the experimental conditions induce a high level of proton pump activity. An alteration either of the ATPase itself or of a factor controlling its activity is compatible with our observations.  相似文献   

5.
Data are presented on the suitability of Arabidopsis thaliana seedlings for studies on intracellular pH regulation. In this material, grown in the dark in liquid medium, the determination of weak acid distribution at equilibrium provides an adequate method for calculating cytosolic pH values, in spite of the failure of benzylamine as a vacuolar pH probe. The stimulation of the H+ pump by K+ or K+ and fusicoccin (FC) is associated with a marked alkalinization of both cytosol and cell sap, and with a strong increase in malate level, whereas its inhibition by erythrosin B (EB) leads to the opposite effects. A good quantitative correlation is evident between the changes in net H+ extrusion and those in intracellular pH and malate content, in particular, with FC+K+. Cell sap buffer capacity is strongly influenced by the different treatments, its changes being substantially accounted for by changes in malate level. A comparison between the values of intracellular pH and malate level in wt and in the 5-2 mutant shows that in the mutant the cytosolic pH is always more acidic, and the intracellular alkalinization induced by FC+K+ and also by K+ alone is significatively lower. These results support the view that the partial insensitivity of 5-2 to FC is due to a reduced functionality of the H+-extruding system on which FC acts, and that the depression of the H+ pump activity in the mutant does not depend on a possible regulation by constitutively higher cytosolic pH values.  相似文献   

6.
In vivo treatment of maize (Zea mays L.) coleoptile segments with auxin (indole-3-acetic acid; IAA) and fusicoccin (FC) followed by plasma-membrane isolation was used to characterize the effects of these treatments on the plasma-membrane H+-ATPase. Both IAA and FC increased H+ extrusion and elongation rate of the coleoptile segments, FC more strongly than IAA. Plasma membranes isolated after in-vivo treatment with FC showed a twofold stimulation of ATP hydrolysis and a several-fold stimulation of H+ pumping, whereas no effect was observed after IAA treatment, irrespective of whether the plasma membranes were prepared by two-phase partitioning or sucrose-gradient centrifugation. A more detailed investigation of the kinetic properties and pH dependence of the enzyme showed that FC treatment led to a twofold increase in V max, a decrease in K m for ATP from 1.5 mM to 0.24 mM, and a change in pH dependence resulting in increased activity at physiological pH levels. Again, IAA treatment showed no effects. Quantitation of the H+-ATPase by immunostaining using four different antibodies revealed no difference between IAA-and FC-treated material, and controls. From these data we conclude that (i) neither IAA nor FC gives rise to an increase in the amount of H+ -ATPase molecules in the plasma membrane that can be detected after membrane isolation, and (ii) if the H+-ATPase is activated by IAA, this activation is, in contrast to FC activation, not detectable after membrane isolation.Abbreviations BTP 1,3-bis(tris[hydroxymethyl]methylamino)-propane - FC fusicoccin - lyso-PC lysophosphatidylcholine - Mes 2-(N-morpholino)ethanesulfonic acid This paper is dedicated to Prof. Dieter Klämbt on the occasion of his 65th birthdayWe thank Ann-Christine Holmström and Adine Karlsson for excellent technical assistance, Professor Ramón Serrano (Instituto de Biologia Molecular y Celular de Plantas, UPV-CSIC, Universidad Politecnica, Valencia, Spain) for a generous gift of antisera to the H+-ATPase and Professor Wolfgang Michalke (Institut für Biologie III, Albert-Ludwigs-Universität, Freiburg, Germany) for kindly providing the monoclonal antibody to the H+-ATPase. This work was supported by the Swedish Natural Science Research Council, the Deutsche Agentur für Raumfahrtangelegenheiten (DARA, Bonn) via AGRAVIS (Bonn) and by the Ministerium für Wissenschaft und Forschung (MWF, Düsseldorf). Thomas Jahn received scholarships from the Deutsche Graduiertenförderung des Landes Nordrhein-Westfalen and the Deutscher Akademischer Austauschdienst (DAAD, Bonn).  相似文献   

7.
Proton excretion induced by optimal concentrations of indoleacetic acid (IAA) and fusicoccin (FC) differs not only in maximum rate of acidification but also in the lag before onset of H+ excretion and in sensitivity to cycloheximide. Because these differences might simply be a consequence of the difference in rate of proton excretion, FC and IAA have now been compared using oat coleoptiles (cv. Victory) under conditions where the rates of acidification are more similar, i.e. suboptimal FC versus optimal IAA. As the concentration of FC is reduced, the rate of H+ excretion decreases, the final equilibrium pH increases, and the lag before detectable acidification increases up to 7-fold. This enhanced lag period is not primarily a consequence of wall buffering, inasmuch as it persists when a low concentration of FC is added to sections which were already excreting H+ in response to IAA. An extended lag also occurs, upon reduction of FC levels, in the hyperpolarization of the membrane potential, before enhancement of O2 uptake and before the increased rate of Rb+ uptake. The presence or absence of a lag is not a distinguishing feature between FC and IAA actions on H+ excretion and cannot be used to discriminate between their sites of action. In contrast, the insensitivity of FC-induced H+ excretion to cycloheximide, as compared with the nearly complete inhibition of this auxin effect by cycloheximide, persists even at dilute concentrations of FC. This seems to be a basic difference in H+ excretion by IAA and FC.  相似文献   

8.
In maize (Zea mays F, XL 640 A, DEKALB) coleoptiles, cordycepin (3′-deoxyadenosine) is very active in preventing the cell elongation. H+ extrusion and K+ uptake induced by IAA and, to a much lesser degree, the same phenomena induced by fusicoccin (FC). Cordycepin, while depressing uridine incorporation into RNA, does not decrease the ATP level or significantly influence the pyruvate level and leucine incorporation into proteins in this material. These results support the hypothesis that one or more proteins. whose synthesis is dependent upon short half-life mRNAs, are essential for a full response to IAA. while this requirement is only partial in FC-stimulation of growth. They also confirm the view that auxin- or FC-induced activation of H+/K+ exchange plays an important role in mediating the effects of these compounds on cell enlargement.  相似文献   

9.
Robert E. Cleland 《Planta》1976,128(3):201-206
Summary The fungal toxin fusicoccin (FC) induces both rapid cell elongation and H+-excretion in Avena coleoptiles. The rates for both responses are greater with FC than with optimal auxin, and in both cases the lag after addition of the hormone is less with FC. This provides additional support for the acid-growth theory. The FC responses resemble the auxin responses in that they are inhibited by a range of metabolic inhibitors, but the responses differ in three ways. First auxin, but not FC, requires continual protein synthesis for its action. The auxin-induced H+-excretion is inhibited by water stress or by low external pH, while the FC-induced H+-excretion is much less sensitive to either. It is concluded that auxin-induced and FC-induced H+-excretion may occur via different mechanisms.Abbreviations FC fusicoccin - DNP dinitrophenol - CCCP carbonylcyanide m-chlorophenylhydrazone - CHl cycloheximide - IAA indoleacetic acid  相似文献   

10.
  1. The effect of IAA and FC on the extension of isolated epidermisof light-grown Alaska pea epicotyls was studied under differentconditions with an extension apparatus. The following resultswere obtained.
  2. The epidermis extended in response to low pHbuffer solutionof 1–10 mM, maximum extension being achievedat pH below5.5.
  3. IAA, 5 mg/liter, caused, although not consistently,an extensionof epidermal strips in 1 mM buffer, but not at10 mM.
  4. Consistent extension of the isolated epidermis dueto IAA wasobtained by addition of GTP, ATP, ITP or UTP (sodiumsalts),but not nucleosides, nitrogen bases or sugars.
  5. A fungaltoxin, FC, at 10–5 M induced extension of theepidermiswithout addition of the nucleoside triphosphates.
  6. IAA andFC caused H+ extrusion in peeled epicotyl segments bothin thepresence and absence of GTP. IAA caused appreciable H+extrusionin the isolated epidermis only in the presence ofGTP, whereasH+ extrusion by the epidermis was induced by FCeven in theabsence of GTP.
From these results, we concluded that IAA induces extensionof the isolated epidermis under the above conditions throughthe mediation of H+ ions. (Received July 12, 1976; )  相似文献   

11.
The stimulation of H+ extrusion by hyper-osmotic stress (0.2–0.3 M mannitol) in cultured cells of Arabidopsis thaliana (L.) Heynh. was shown to be associated with an inhibition of Cl? efflux, whereas hypo-osmotic stress, inhibiting H+ extrusion, early and strongly stimulated Cl? efflux. In this paper, we investigate the contribution of other factors [K+ transport and transmembrane electric potential difference (Em)] to the hyper-osmotic-induced activation of the plasma membrane (PM) H+-ATPase. The effects of mannitol (MA) on K+ transport and on Em were compared with those of fusicoccin (FC) since the modes of action of osmotica and of the toxin in stimulating H+-ATPase activity seem to differ at least in some steps. The changes in H+ extrusion induced by hyper- or hypo-osmotic stress were opposite and could be reversed by the application of the respective opposite stress. The effect of MA on H+ extrusion was dependent on the presence of K+ (or Rb+) similarly to that of FC, while Na+ and Li+, which also stimulated the FC effect, were ineffective on that of MA. The MA effect was independent of the anions (Cl?, SO42?, NO3?) accompanying K+. K+ net uptake and K+ influx were stimulated by both MA and FC. Tetraethylammonium (TEA+) and Cs+ inhibited both MA- and FC-induced H+ extrusion, suggesting the involvement of K+ channels. MA (0.2 M) induced a strong hyperpolarization of Em both in the absence and in the presence of K+. The hyperpolarizing effect of MA was also found when the cells were already hyperpolarized by FC, and was rapidly reversed by removing the osmoticum from the medium. In the presence of the lipophilic cation tributylbenzylammonium (TBBA+), MA was no longer able to stimulate H+ extrusion, while FC still stimulated it. In cells pretreated with TBBA+, which strongly depolarized Em, the subsequent addition of FC repolarized it, while the hyperpolarizing effect of MA was lacking. On the contrary, in cells pretreated with Erythrosine B (EB), Em was strongly depolarized and the following addition of FC did not hyperpolarize it, while the hyperpolarizing effect of MA was still observed. These results suggest that the mechanism of MA in activating H+ extrusion and K+ uptake is different from that of FC. The rise in net K+ uptake seems to be driven by the activation of some hyperpolarizing system that does not seem to depend on a direct activation of PM H+-ATPase, but rather on the inhibition of Cl? efflux induced by hyper-osmotic stress.  相似文献   

12.
The effects of extracellular K+ concentration ([K+]o) on the pH of cell sap, “bulk cytoplasm” and vacuole have been investigated in Elodea densa leaves under conditions of either low or high activity of the plasmalemma electrogenic H+ pump. Cell sap pH was evaluated directly in the cell sap expressed after freezing and thawing. Cytoplasmic and vacuolar pH were calculated by the weak base and weak acid distribution method, DMO and benzylamine appearing to be a suitable acid and base, respectively, for this purpose in this material. When added to the basal medium (no rapidly permeating ions present), 5 mM K+ induced an increase in intracellular pH, larger for the cell sap and the vacuole (about 0.2 units), and smaller but still significant for the cytoplasm (0.07 units). This alkalinizing effect of K+ was thus associated with a significant decrease in the pH difference across the tonoplast. The alkalinizing effect of K+ was markedly and synergistically enhanced by the presence of fusicoccin, a condition inducing a marked activation of H+ extrusion and of K+ uptake. The correlation between these effects of [K+]o on intracellular pH and those on H+ extrusion indicates that changes in extracellular K+ concentration, and thus in K+ influx, can influence cytoplasmic and vacuolar pH by modulating the rate of H+ extrusion by the plasmalemma H+ pump.  相似文献   

13.
The effects of temperature (5–45°C) on endogenous growth, growth in the presence of either indoleacetic acid (IAA) or fusicoccin (FC), and proton extrusion in maize coleoptile segments were studied. In addition, membrane potential changes at some temperatures were also determined. It was found that in this model system endogenous growth exhibits a clear maximum at 30°C, whereas growth in the presence of IAA and FC shows the maximum value in the range 30–35°C and 35–40°C, respectively. Simultaneous measurements of growth and external medium pH indicated that FC at stressful temperatures was not only much more active in the stimulation of growth, but was also more effective in acidifying the external medium than IAA. Also the addition of either IAA or FC to the bathing medium at 30 and 40°C did not change the kinetic characteristic of membrane potential changes observed for both substances at 25°C. However, the increased temperature significantly decreased IAA and FC-induced membrane hyperpolarization. IAA in the incubation medium, at 10°C, brought about additional membrane depolarization (apart from the one induced by low temperature). In contrast to IAA, FC at 10°C caused gradual repolarization of membrane potential, which correlated with both FC-induced growth and FC-induced proton extrusion. A plausible interpretation for temperature-induced changes in growth of maize coleoptile segments is that, at least in part, these changes were mediated via a PM H+-ATPase activity.  相似文献   

14.
The effects of NaCl-adaptation and NaCl-stress on in vivo H+ extrusion and microsomal vanadate- and bafilomycin-sensitive ATPase and PPase activities were studied in tomato cell suspensions. Acidification of the external medium by 50 mM NaCl-adapted and non-adapted (control) tomato cells was similar. Extracellular acidification by both types of cells during the first hour of incubation with 2 μM fusicoccin (FC) in the presence of 100 mM NaCl was lightly increased while in the presence of 100 mM KCl it was increased by 3 (control)- and 6.5 (adapted)-fold. Extracellular alkalinization after 2 h of cell incubation in 100 mM NaCl indicated the possibility that a Na+/H+ exchange activity could be operating in both types of cells. Moreover, acidification induced by adding 100 mM NaCl + FC to non-adapted cells was relatively less affected by vanadate than that induced by 5 mM KCl + FC, which suggested that salt stress could induce some component other than H+ extrusion by H+-ATPase. In addition, no differences were observed in microsomal vanadate-sensitive ATPase activity among control, NaCl-adapted and NaCl-stressed cells, while K+-stimulated H+-PPase and bafilomycin-sensitive H+-ATPase activities were higher in microsomes from NaCl-adapted than in those from control cells. Likewise, the stimulation of in vivo H+ extrusion in NaCl adapted cells under NaCl or KCl stress in the presence of FC occurred with an inhibition of H+-PPase and bafilomycin-sensitive H+-ATPase activities and without changes in the vanadate-sensitive H+-ATPase activity. These results suggest that the stimulation of tonoplast proton pumps in NaCl-adapted cells, without changes in plasmalemma H+-ATPase, could serve to energize Na+ efflux across the plasmalemma and Na+ fluxes into vacuoles catalyzed by the Na+/H+ antiports. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The growth-promoting phytotoxin fusicoccin1 stimulates both [86Rb+]K+ uptake and H+-excretion from oat coleoptiles by at least 5-fold after a lag of less than 90 seconds. Both processes are affected similarly by metabolic inhibitors and external pH. FC appears to activate a K+H+ exchange which is only partly specific for K+, and which can transport more H+ than K+. The natural plant growth hormone indoleacetic acid1 also stimulates K+-uptake, but only after a long lag, and to a maximum of 30%, suggesting that IAA does not affect directly the K+H+ exchange process, and that the two hormones induce H+-excretion, and thus cell elongation, by different mechanisms.  相似文献   

16.
Ferricyanide reduction by Elodea densa leaves, in the dark, is associated with: (a) acidification of the medium; (b) decrease (about 0.2-0.3 units) of intracellular pH (measured in cell sap, cytoplasm, and vacuole); (c) depolarization of the transmembrane potential; (d) net efflux of K+ to the medium. Ferricyanide-induced acid secretion is markedly increased by the presence of fusicoccin (FC), and this effect is severely inhibited by the proton pump inhibitors erythrosine B and vanadate. In the presence of ferricyanide FC-induced H+ extrusion no longer requires the presence of K+ in the medium. The (ferricyanide reduced)/(H+ extruded) ratio varies from about 2, in the absence of FC, to about 1 when the toxin is present, and to more than 4, when ATP-driven H+ extrusion is inhibited by erythrosine B or by vanadate. Fusicoccin markedly reduces K+ release to the medium. The ratio (ferricyanide reduced)/(H+ extruded + K+ released) approaches unity under all of the three conditions considered. These results indicate that ferricyanide reduction depends on a plasmalemma system transporting only electrons to the extracellular acceptor, with consequent potential depolarization and cytoplasm acidification. Most of the protons released in the cytoplasm would be secondarily extruded by the ATP-driven pump, stimulated by both intracellular acidification and depolarization. K+ efflux would depend on potential depolarization.  相似文献   

17.
The phytotoxin fusicoccin (FC) causes rapid synthesis of malate in coleoptile tissues, presumably via phosphoenolpyruvate (PEP) carboxylase coupled with malate dehydrogenase. The possibility that FC directly affects PEP carboxylase in Avena sativa L. and Zea mays L. coleoptiles was studied and rejected. The activity of this enzyme is unaffected by FC whether FC is added in vitro or a pretreatment to the live material. FC does not change the sensitivity of the enzyme to bicarbonate or malate. The activity of FC, instead, appears to be indirect. The pH sensitivity of PEP carboxylase is such that its activity, and thus the rate of malate synthesis, may be enhanced by an increase in cytoplasmic pH accompanying FC-induced H+ excretion. Since the enzyme is also particularily sensitive to bicarbonate levels, malate synthesis may also be enhanced by FC-induced uptake or generation of CO2.  相似文献   

18.
The effects of juglone (JG) on the endogenous growth, growth in the presence of either indoleacetic acid (IAA) or fusicoccin (FC) and on proton extrusion were studied in maize coleoptile segments. In addition, membrane potential changes were also determined at chosen JG concentrations. It was found that JG, when added to the incubation medium, inhibited endogenous growth as well as growth in the presence of either IAA or FC. Simultaneous measurements of growth and external pH indicated that inhibition of either IAA-induced growth or proton extrusion by JG was a linear function of JG concentration. Addition of JG to the control medium caused depolarization of the membrane potential (Em), value of which was dependent on JG concentration and time after its administration. Hyperpolarization of Em induced by IAA was suppressed in the presence of JG. It was also found that for coleoptile segments initially preincubated with JG, although subsequently removed, addition of IAA was not effective in the stimulation of growth and medium acidification. Taken together, these results suggest that the mechanism by which JG inhibits the IAA-induced growth of maize coleoptile segments involves inhibition of PM H+-ATPase activity.  相似文献   

19.
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase.  相似文献   

20.
Na+/H+ exchange activity in whole cells of the halotolerant alga Dunaliella salina can be elicited by intracellular acidification due to addition of weak acids at appropriate external pH. The changes in both intracellular pH and Na+ were followed. Following a mild intracellular acidification, intracellular Na+ content increased dramatically and then decreased. We interpret the phase of Na+ influx as due to the activation of the plasma membrane Na+/H+ antiporter and the phase of Na+ efflux as due to an active Na+ extrusion process. The following observations are in agreement with this interpretation: (a) the Na+ influx phase was sensitive to Li+, which is an inhibitor of the Na+/H+ antiporter, did not require energy, and was insensitive to vanadate; (b) the Na+ efflux phase is energy-dependent and sensitive to the plasma membrane ATPase inhibitor, vanadate. Following intracellular acidification, a drastic decrease in the intracellular ATP content is observed that is reversed when the cells regain their neutral pH value. We suggest that the intracellular acidification-induced change in the internal Na+ concentration is due to a combination of Na+ uptake via the Na+/H+ antiporter and an active, ATPase-dependent, Na+ extrusion. The Na+/H+ antiporter seems, therefore, to play a principal role in internal pH regulation in Dunaliella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号